
625 

A faster method for sampling independent sets 

Mark Huber* 
Department of Statistics 

Stanford University 
Stanford, CA 94305-4065 
mhuber@orie.cornell.edu 

October 20, 1999 

Abstract  

The problem of finding a random independent set arises 
in several contexts. In statistical physics, it is known as 
the hard core gas model. These samples may also be 
used to approximate the number of independent sets in 
a graph or to find large independent sets. One sampling 
approach is to  run a Markov chain '%r  a long time". 
One such chain for this problem was introduced by Dyer 
and Greenhill, and here we develop a bounding chain for 
the Dyer-Greenhill chain. This bounding chain allows 
us to develop experimental upper bounds on the mixing 
time of the chain, and to create perfect samples using 
this chain. An implementation of this algorithm shows 
that  on the two dimensional lattice it is faster than a 
competing chain, the single-site heat bath chain. 

1 The Problem 

An independent set Z of a graph is a collection of 
nodes such that no two nodes of the independent set 
are adjacent to one another. The distribution we seek 
to sample from is 

AIZl 
~(Z)- Z~ 

where Zx is the normalization constant that makes 
a probability distribution. For example, when A = 1, 
Zx is the number of independent sets in the graph, 
and finding this number is a SP-complete problem. 
The ability to sample quickly from this distribution 
immediately gives a method to approximate ZA (see [7]). 

In statistical physics, r is the hard core gas model, 
where the graph is often a lattice, and the location of 
gas molecules correspond to nodes in the independent 
set. This model is one of the simplest to exhibit phase 
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transit ion behavior [9]. Roughly put, when A is small 
the independent sets are highly disorganized, but as A 
grows large, long range effects begin to appear, and large 
structures become highly likely. 

It has been shown [2] tha t  when A rises above a 
certain value is it NP-hard to obtain a sample from 
this distribution for general graphs. The techniques we 
describe here will only be useful below this threshold. 

A Markov chain is a stochastic process where 
Xt+l = ¢(Xt ,R t )  where Xt is the state of the chain 
at step t, ~b is a deterministic function, and Rt is some 
random bits. Under mild conditions (irreducibility and 
aperiodicity) the distribution of Xt will approach the 
s ta t ionary distribution of the chain as t -~ oo. 

Dyer and GreenhiU [3] created a Markov chain with 
~r as its stat ionary distribution. Let X(v) = 0 for nodes 
v not in the independent set, and X(v)  = 1 for nodes 
in the independent set. 

Dyer and GreenhiU hard core chain step 
Set  X 4-- Xt  
C h o o s e  a vertex v uniformly at random from V 
C h o o s e  U uniformly from [0, 1] 
C a s e  1: v has no neighbors colored 1 in Xt, then 

A . I f  U < T~'X" Set X(v) 4-- 1 
Else :  Se t  X(v)  +-- 0 

C a s e  2: v has exactly 1 neighbor w colored 1 
I f  U A • Pswap I+A" Set  X(v)  4-- 1, X(w)  +-- 0 
Else :  Se t  X(v)  4-- 0 

S e t  Xt+l +- X 

Here Ps,,,av is a parameter  in [0,1] chosen by the 
user. If A is the maximum degree of the graph, this 
chain with Psw~v = 1/4 is known to be rapidly mixing 
when A < 2 / (A - 2). However, we want to obtain 
samples for larger values of A. 

T h e  B o u n d i n g  C h a i n  One method for doing so 
is bounding chains, which provide a basis for perfect 
sampling algorithms. The Dyer Greenhill chain lives on 
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state  space {0, 1} v. The  bounding chain lives on state 
space {{0}, {1}, {0, 1}} v. It is designed so that  if Y 
is a process on the bounding chain and X is a process 
on the original chain, Xt(v)  E Yt(v) Vv implies tha t  
Xt+l(v)  E Yt+l(v) Vv. We start  with Yo(v) = {0, 1} 
for all v so that  trivially xo(v) E Yo(v) for all x0 and 
all v. Now if we ever come to a time that  ]Yt(v)[ = 1, 
then only one state is possibly contained the bounding 
chain and we say that  complete coalescence has occurred 
(see [6, 5, 4] for a more detailed description of bounding 
chains and their relationship to perfect sampling). 

In the  bounding chain step, let a(v) be the number 
of neighbors of v colored {0}, b(v) the number of 
neighbors colored {1}, and c(v) the number colored 
{0, 1}. Finally, let d(v) be the degree of v, so that  
a(v) + b(v) + c(v) = d(v). 

Bounding chain step for DG chain 
S e t  Y +- Yt 
C h o o s e  vertex v uniformly at random from V 
C h o o s e  U uniformly from [0, 1] 
If  t: > Set r (v )  6- {0} 
Else  

C a s e  1: a(v) = d(v), b(v) = O, c(v) = 0 
S e t  Y(v)  6- {1} 

C a s e  2: a(v) = d(v) - 1, b(v) = 1, c(v) = 0 
I f  U < P~==pl+-~ and w ~ v with Y(w)  = {1} 

S e t  Y(v)  6- {1}, Y(w)  +-- {0} 
Else :  S e t  Y(v) +-- {0} 

C a s e  3: b(v) > 1: S e t  Y(v) +- {0} 
C a s e  4: a(v) = d(v) - 1, b(v) = O, c(v) ~ 1 

I f  V < P~ap  1+~ and w ~ v with Y ( w )  = {0,1} 
Set  Y(v) 6- {1}, = {0} 

E l s e :  S e t  Y(v)  6- {0,1} 
C a s e  5: b(v) = 1, c(v) > 1 

i f U  < x - Ps,~,~v 1-'~" and w ~ v with Y(w)  = {1} 
S e t  Y(v)  6- {0, 1}, Y(w)  6- {0, 1} 

C a s e  6: a(v) = d(v) - c(v), b(v) = O, c(v) > 1 
S e t  Y(v )  6- {0, 1} 

Determining complete coalescence via the bounding 
chain gives us a means of getting experimental upper 
bounds on the mixing time via a classic theorem of 
Doeblin [1] and a means for generating samples exactly 
from 7r using coupling from the past (CFTP)  [8] (see [6] 
for more details). The  expected running time of C F T P  
is proport ional  to the expected t ime needed for complete 
coalescence to be detected. 

Another  Markov chain used to obtaining samples 
from 7r is the single site heat bath chain. Haggstrom 
and Nelander used antimonotonicity to give a means 
for determining complete coalescence of this chain [4]. 
From an extension of [10], we know that  this approach 
will always detect complete coupling in O(ninn)  t ime 
when A < 2 / ( A -  2). Similarly, our approach to 

bounding the Dyer Greenhill chain can also be shown 
to only require O(nlnn)  t ime when ~ < 2/(A - 2). 

For ~ > 1, the plot below shows the expected t ime 
the two algorithms take to reach complete coalescence 
when Psw~v --- 1/4 on a square lattice with 100 points 
on a side. As is usual with Monte Carlo Markov chain 
methods, running time is measured in steps of the 
Markov chain needed. The factor of speed gain seems to 
grow roughly exponentially in lambda; when )~ = 1, our 
method is about twice as fast, but by the time A = 3.5, 
it is roughly 3.6 times as fast. 

Time until complete coalescence 
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