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Abstract 

Lct r be a rational in (0,1]. There exists a finite group G for which l l ~ c  proportion 
of elements g and subgroups H satisfying gHg- '  = If is r .  An analogous rcsult holds 
for three other measures of 'Ilanriltonianness'. 

1 Introduction 

Let the finite group G act 011 the sets S = S(G) and C: = C(G) of its subgoups  arid cyclic 
subgroups, respectively. by conjugation. Let hrS = N S ( G )  and 1YC = IVC(G) denotc 
the normal and iiormal cyclic subgroups of G, respectively. IIrrc are four rneasurez of 
'Hamiltonian~iess' for C.  (Recall that  a finite group is Handtonian i f  each of its subgroups 
is normal.) 
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1014 AHEARN, HUBER, AND SHERMAN 

p(G) = Pc(S)  = k(C)/ISI:  the ratio of the number of conjugacy classes in S to the 
number of subgroups of C .  This measure is the proportion of elements g and subgroups 
H satisfying gHg-' = H (see [ I ] ) .  

p(G) = +(S) = J N S J / J S J :  the proportion of subgroups of G that are normal. 

p(C)  = Pc(C) = k(C)/ISI:  the ratio of the number of conjugacy classes in C to the 
number of cyclic subgroups of G. 

p(G) = +(C) = INCI/(CI: the proportion of cyclic subgroups of G that are normal. 

I t  was shown in [l] that for each rational number r E (O,l] ,  there exists a sequence of 
finite groups {C,) such that lim p(Gn) = r where p is any one of these measures. In fact, 

n-m 
each rational number r E (O,1] is assumed by each of these four measures. Specifically, 

Theorem For each rational number r E (O,l] ,  there ezists a a finite group G such that 
PG(S) = k ( C ) / ( S J  = r. 

The purpose of this paper is to provide a contructive proof of this theorem and to  exhibit 
the appropriate construction for the other measures 

2 Proof of the theorem 

If r = 1, then any Hamiltonian group will do. Otherwise, an appropriate group may be 
selected from the class 

J(p ,  n) = (a ,  b I ap = bZ" = e and bab-' = a-')  

where p is an odd prime and n is a positive integer. 
The following facts concerning J (p ,  n) are clear. I J(p ,  n )  1 = p2". J (p ,  n) has one Sylow 

psubgroup and p Sylow 2-subgroups, all of which are cyclic. J(p ,  n )  has a cyclic subgroup 
Jo(p,n) = (a ,  b2) of index two. Jo(p,n) has 2n subgroups, all of which are characteristic 
in Jo(p, n) and are therefore normal in J(p ,  n ) .  Any subgroup of J(p ,  n) not contained in 
Jo(p,n) contains a Sylow 2-subgroup of J (p ,n ) ,  so is one of the p Sylow 2-subgroups of 
J(p ,  n) or J(p ,  n) itself. There are therefore 2n f p + 1 subgroups of J(p,  n). Each of these 
subgroups, but for J (p ,n )  itself, is cyclic and 2n of the subgroups are normal. 

I t  follows that 

Lemma Let a ,  b E Z+ be such that a < b. Then 

for some integer n 2 1 and some odd prime p. 
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HAMILTONIAN FINITE GROUPS 

Proof .  We find a n  integer m such tha t  

i.e., we find a solution m to  t h e  equation 2bm = 2 a m f p -  1 ,  or equivalently m(b-a)+l  = p. 
By Dirichlet's Theorem, nz(b - a) + 1 = p has a solutio~i for p 2 3, and m 2 2. Since Zam is 
even and is greater than or equal to  4, it may be written as 271 + 2 for some suitable positve 
integer n. The denominator becomes 2 n  + p  + 1 and we are donc. 

Therefore, for each rational number r 6 (0,l): we may find p and n such that  PJ(p,n)(S) = 
T .  

3 Constructions for the other measures 

The construction for each of t h e  other measures can be summarized as follo\vs 

i) Write r ;- u / b  as a product of ratios, each of which is is l c s  than one. (This is 
technical, but  elementary and in the spirit of the  lemma, so  is not included here.) 

ii) Construct groups with pairwise relatively prime orders whose nncasures are the  factors 
of a / b  

iii) Take G to  be the direct product of these groups. The measure of this direct product 
LS the product of the measures because of  i i .  

'ib complete this program we need the following two classes of groups. Let p be an odd 
prime and let 71 2 3. 

K(p ,n)  = (a,blapn-' = bP = e and bab-' = av'z~2") 

H ( p , n )  = K ( p , n )  x (c]cp = e ) 

The groups I i ( p , n )  were used in [I] and it was shown there that  

(C) = Ln - z)p + 

(n  - l ) p +  2 '  

For the groups H(p ,  n )  we observe that  

and 
IS(H(p: n) )  / = ( n  - l)[(p2 + 1) + p ( p  + I)] -+ Z, 4- 3 

The proofs of these facts, which amount to adjusting the corrapolitiing resl~lts for h'(p, 12)  

for the cyclic factor (c). are elementary (but tedious) so are not incluticd here. 
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To achieve Pc(S) = alb ,  we write 

for some integers nl 2 3, nz 2 1, n3 2 3 and a prime p different from 2, 3, and 7 and choose 

To achieve PG(C) = alb ,  we write 

for some integers nl 2 1, 722 2 3 and some prime p > 5 and choose 

To achieve PG(C) = alb ,  we write 

a 2nl (nz-2)q+2 
b - 2 n l + p  (nz- l )q+2 

for some integers n1 2 1 and n2 > 3 and distinct odd primes p and q and choose 
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