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In Monte Carlo simulation, samples are drawn from a distribution to estimate
properties of the distribution that are too difficult to compute analytically. This
has applications in numerous fields, including optimization, statistics, statistical
mechanics, genetics, and the design of approximation algorithms.

In the Monte Carlo Markov chain method, a Markov chain is constructed which
has the target distribution as its stationary distribution. After running the Markov
chain “long enough”, the distribution of the final state will be close to the stationary
distribution of the chain. Unfortunately, for most Markov chains, the time needed
to converge to the stationary distribution (the mixing time) is completely unknown.

Here we develop several new techniques for dealing with unknown mixing times.
First we introduce the idea of a bounding chain, which delivers a wealth of informa-
tion about the chain. Once a bounding chain is created for a particular chain, it is
possible to empirically estimate the mixing time of the chain. Using ideas such as
coupling from the past and the Fill-Murdoch-Rosenthal algorithm, bounding chains

can also become the basis of perfect sampling algorithms. Unlike traditional Monte



Carlo Markov chain methods, these algorithms draw samples which are exactly
distributed according to the stationary distribution.

We develop bounding chains for several Markov chains of practical interest,
chains from statistical mechanics like the Swendsen-Wang chain for the Ising model,
the Dyer-Greenhill chain for the discrete hard core gas model, and the continuous
Widom-Rowlinson mixture model with more than three components in the mix-
ture. We also give techniques for sampling from weighted permutations which have
applications in database access and nonparametric statistical tests. In addition,
we present here bounding chains for a variety of Markov chains of theoretical in-
terest, such as the k coloring chain, the sink free orientation chain, and the anti-
ferromagnetic Potts model with more than three colors. Finally we develop new
Markov chains (and bounding chains) for the continuous hard core gas model and

the Widom-Rowlinson model which are provably faster in practice.
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Chapter 1

The Need for Markov chains

How dare we speak of the laws of chance? Is not chance the antithesis
of all law?

-Bertrand Russell, Calcul des probabilités

Modeling a roulette wheel is quite a bit simpler with probability theory than
with Newtonian mechanics. While it is theoretically possible to observe the initial
angular momentum imparted to the wheel and ball, followed by an equally intense
investigation into the frictional properties that cause the ball to land on red instead
of black, a probabilistic approach captures the phenomenon in an elegant man-
ner, and yields results that are both accurate and insightful as regards long term
predictions over whether the player will return home poorer than before.

Analysis of gambling systems provided an initial impetus to build a theory of
probability, but today many systems whose interactions are too complex to model

exactly are modeled probabilistically. Often this provides enormous gains both in



the simplicity of the model and in the ability to analyze various properties of the
system.

Today’s models have evolved into probability distributions that are quite easy
to describe, but which require the use of sophisticated arguments to analyze di-
rectly. A way to avoid use of these complicated techniques is to use a simulation
approach. When using this technique, no attempt is made to analyze properties
of the distributions directly, instead samples are drawn from the distributions, and
then statistical estimates are formed for properties of interest. Once the ability to
generate random samples is given, a host of statistical methods can be brought to
bear on the problem. The accuracy and application of these statistical estimates has
been extensively studied. The question that remains is how exactly does one draw
these random samples in an efficient manner? The answer for many applications is
to use Monte Carlo Markov chain methods. This work introduces a new method
in this area called bounding chains, an idea that often can lead to theoretical and
experimental insight into a problem.

In this first chapter we describe the Markov chain method, starting with basic
definitions and facts concerning Markov chains and laying out the notation that
will be used throughout this dissertation. The next chapter presents the discrete
models and distributions to which we will be applying our methods, after which
we describe the Markov chains developed previously for these problems. In the
fourth chapter we introduce our primary tool, bounding chains. Bounding chains
provide a basis for algorithms for experimentally determining the time needed to

draw approximate random samples using a Markov chain, as well as forming the



foundation for algorithms that draw perfectly random samples. After introducing
bounding chains, we show how this approach may be utilized for each of the discrete
models discussed earlier. The following chapter explores the difference between
approximate and perfect sampling, with an exposition of one technique for perfect
sampling, the coupling from the past method of Propp and Wilson [41]. After
that, we present another perfect sampling technique, an algorithm of Murdoch and
Rosenthal that builds on earlier work of Fill [24], as well as the first analysis of its
running time. Finally we turn to continuous models, and explore how the successful
techniques from the discrete case may be used to construct and analyze Markov
chains for infinite state space processes.

For many probability distributions of interest, we present the first algorithms for
perfect sampling: the hard core gas model using the Dyer-Greenhill chain, the heat
bath chain for sink-free orientations of a graph, the heat bath chain for k£ colorings
of a graph, the antiferromagnetic Potts model, (these last two were independently
discovered though not fully analyzed in [18]), the move ahead one chain for database
access, the continuous Widom-Rowlinson mixture model with at least 3 elements in
the mixture, the antivoter model, and the Swendsen-Wang chain for the Ising model.
For the continuous hard core gas model we develop new bounds on the mixing time
of the chain. In addition, we develop new Markov chains for the continuous hard core
gas model, the repulsive area interaction model and the Widom-Rowlinson model
which have provably stronger bounds on the mixing time than were previously
known. The work on perfect sampling and mixing times primarily emerges from an

understanding of bounding chains, a simple but extraordinarily powerful tool. The



improved chains come from a generalization and application of a simple “swapping”

move of Broder to a wide variety of chains.

1.1 Monte Carlo Markov chain methods

Anyone who has ever shuffled a deck of cards has used a Monte Carlo Markov
chain (MCMC) method. The goal of any MCMC algorithm is to draw a random
sample from a specific probability distribution. In the case of shuffling cards, the
distribution is the uniform distribution over all permutations of the cards.

A Markov chain is a stochastic process possessing the forgetfulness property.
Informally, this means that the next state of the chain depends only on the value
of the previous state and random choices made during that time step. It does not
depend on the value of any prior state. This property makes simulation of a Markov
chain very easy. The user need only compute a random function of the current state
without regard to the values of prior states.

For the first five chapters of this dissertation, we will be dealing with Markov
chains which have a finite state space, and so the definitions we give here will apply
to this discrete case. In chapter 8 we expand our scope to include continuous state

spaces, and we present a more general treatment of Markov chains in that chapter.

1.1.1 Markov chains

Let 2 be a finite set which we will call the sample space or state space. Let

X =(...,X_1,Xo,Xy,...) be a stochastic process with values chosen from Q. Let



o(..., X 1, X0, X1,...,X;) be the o-algebra generated by ..., X; 1, X;.

Definition 1.1 The stochastic process X = (..., X _1,Xo, X1,...) on Q is said to

be a Markov chain if
P(Xi+1 == ]|0’( . -;Xz?l;Xi)) = P(XZ'+1 = ]|Xz)

We will use a matrix P to denote the probability of moving from state i to state

J at a given time. More precisely, let P(i,j) = P(X;11 = j| X, = i).

Definition 1.2 An |Q| x |Q| matriz P is a transition matrix for a Markov chain if
P(i,j) = P(Xi1 = j| Xy =)

for all © and j in Q.

From the definition of P this fact follows immediately.

Fact 1.1 Suppose that the random variable X; has distribution p. Then X1 has

distribution pP.
An easy induction argument together with the above fact yields the following.
Fact 1.2 Let P*(i,j) denote the i,j element of matriz P*. Then
P¥(i, j) = P(X | X, = 9).

Often it is desirable that the process X be able to move over every state of the

Markov chain.



Definition 1.3 A Markov chain is connected or irreducible if for all i, 7 in € there
exists a time t < |Q| such that

P'(i, j) > 0.

Consider a random walk on a graph where the states are nodes of a bipartite
graph and at each time step the state changes to a random neighbor of the node.
Then at all even times the state will be in one bipartition, and at odd times it will
be in the other. We say that such a Markov chain has period 2. More generally, we

have the following definition.

Definition 1.4 Suppose that we have an irreducible Markov chain, and that 2 is
partitioned into k sets € = {Fo,...,Ex_1}. If for all i = 0,...,m — 1 and all
T,y € Ei, Yyep, P(z,y) =1 where j =i+ 1 mod k, then £ forms a k-cycle in the
Markov chain. The period of a Markov chain is the largest value of k for which a

k-cycle exists. If k = 1, the Markov chain is said to be aperiodic.

Together, the properties of aperiodicity and irreducibility have important impli-

cations for a Markov chain.
Definition 1.5 A Markov chain is ergodic if it is both connected and aperiodic.

We have seen that if X; has distribution p, then X;,; will have distribution pP.
If in fact, pP = p, then X;,; will have the same distribution as X;. Induction can

be used to show that X will all be identically distributed for all ¢’ > ¢.

Definition 1.6 If 7P = 7, then 7 is a stationary distribution of the Markov chain.



Throughout this work, the symbol 7 will be used to denote the stationary distribu-
tion of some Markov chain, though often we will describe 7 before we describe the
Markov chain for which it is the stationary distribution.

Ergodic Markov chains are useful for the following reason [10].
Theorem 1.1 An ergodic Markov chain has a unique stationary distribution.

Intuitively, a Markov chain step represents a moving of probability flow along
edges (i,7) such that P(i,j) > 0. The stationary distribution is the probability
distribution such that probability flow into each node is exactly balanced by the
probability flow out of each node. This is a “general balance” condition that flow in
equals flow out. A more restrictive condition would be to require that flow across an
edge in one direction is exactly balanced by the flow across the edge in the opposite

direction.

Definition 1.7 A Markov chain is reversible or is said to satisfy the detailed bal-

ance condition if for all ¢,7 in €2,
w(i)P (i, j) = w(5) P(j, ).
If w(i)P(i,j) = w(j)P(j,4) then we say that the Markov chain is reversible with
respect to the distribution © (and in fact m will be a stationary distribution of the
chain,).
A Markov chain satisfies the detailed balance condition if at stationarity, the
probability flow along each edge (i, j) is the same as the probability flow along each

edge (7,7). The following shows that detailed balance is a stronger condition than

general balance.



Fact 1.3 If a Markov chain is reversible with respect to the distribution p, then p
15 a stationary distribution for the chain. If the Markov chain is connected, this p

15 the unique stationary distribution for the chain.

The names “reversibility” and “detailed balance” appear to have nothing what-
soever to do with one another. In chapter 6 we go into more detail about why this

condition is also called reversibility.

1.1.2 Going the distance

Our ultimate goal is to sample from a target distribution. Given an algorithm which
generates from some probability distribution, we need a method for determining
when our algorithmic output is close to our desired distribution. That is, we need
a metric on distributions.

We will use two common measures of distance, the total variation distance, and

the separation.

Definition 1.8 The total variation distance between a pair of distributions p and
q is denoted ||p, q||7v, and defined as
|Ip; allrv = sup [p(A) — ¢(A)].
ACQ
The following fact about total variation distance will come in handy later.

Fact 1.4 For discrete state spaces €,

ralley = 3 5lp(a) — (o))

z€|Q|



The separation between a distribution and 7 is defined as follows.

Definition 1.9 The stationary distance between p and 7 is denoted ||p,7||s, and

defined as

p(4) - 7(4) (1 ) W&i) |
p

P, Tils = sup ———————— = sup
I I ACQ|m(A)>0 m(A) AcCQ

Since m(A) < 1 for all A C Q, clearly ||p, 7||s > ||p, 7||7v, and this is a stronger
way of measuring how far p is from stationarity.

These two means of quantifying how close the current state is to stationarity
have some advantageous theoretical properties, and are by far the most commonly
seen in practice.

The heart of the Monte Carlo Markov chain method is the idea that if a chain
is run for a long time from any starting distribution, then it will move towards a
stationary distribution of the chain. Armed with our metrics, we may now make

statements about limits of distributions, and make this concept precise.

Theorem 1.2 Suppose we have an aperiodic Markov chain. Then lim,_, . pP* will

be stationary, and if the Markov chain is ergodic, then

lim pP! = 7,

t—o00
where T is the unique stationary distribution of the chain.
Once we know that pP? is converging to 7, the next logical question is, how fast

is it converging? We measure this by the mixing time of the chain. A fact will make

this definition easier.
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Fact 1.5 Given an ergodic Markov chain with stationary distribution w, then we
have that ||pP' — 7||rv is a monotonically decreasing function of t. Put another

way, |[pP" — ||y < ||pPt — 7||py for all t' > t.

Let ¢, denote the distribution that puts probability 1 on state z and 0 elsewhere,
and set P! = ¢, P!. This is the distribution of a process that was begun in state x

and run for ¢ time steps.

Definition 1.10 Let mry(z,€) be the smallest time such that ||P! — 7||rv < €. Let
v (€) = max v (T, €).

Define 1s(x,€) and 7s(€) in the same fashion, using the stationary distance.

Once we know the mixing time of a chain, describing the basic Monte Carlo

Markov chain method is easy.

Monte Carlo Markov chain (MCMC) method
Input: €, (Q, P)

Set X, = z for some x € (.

For i =1 to t,(e)
Take one step on the Markov chain (€, P) from X;
Set X;.1 to be the output of this step

Output X, ()

Figure 1.1: General Monte Carlo Markov chain method

The only thing preventing this from being an actual algorithm is lack of knowl-

edge about the value of 7,(¢). While many heuristics exists for determining this



11

value, we will concern ourselves in the following chapters with developing upper

bounds for 7(¢) which are always accurate.

Definition 1.11 When 7(€) is polynomial in In(Q) and In(1/¢), we say that the

chain is rapidly mizing.

In this work we will develop methods for showing when chains are rapidly mixing,

and ways to deal with them when they are not.



Chapter 2

The Discrete Models

The laws of history are as absolute as the laws of physics, and if the
probabilities of error are greater, it is only because history does not deal
with as many humans as physics does atoms.

-Isaac Asimov, Foundation and Empire

The Monte Carlo Markov chain method is applicable to an amazing range of
problems. Anywhere one wishes to obtain estimates of statistics for a probabilistic
model, often MCMC is the only reasonable approach for even approximating the
answer to a problem.

One of the richest sources of problems in this area comes from statistical mechan-
ics. In this area, substances are modeled as random samples drawn from probabil-
ity distributions. These distributions have particular values for physical parameters
such as energy. Any real substance contains on the order of 10?* particles, so central

limit theorems definitely apply, and statistics for a model are often highly concen-

12
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trated about a single value. Naturally, in evaluating the usefulness of a particular
model, the question arises of what is the average of a particular statistic over a dis-
tribution. For special cases, this question may be answered analytically, but often
the distribution is too complex to allow for a direct approach.

What is perhaps surprising is that many of these models from statistical physics
have counterparts of interest in theoretical computer science. Evaluation of most
statistics of interest in these models are examples of §P-complete problems, and
often simply being able to generate a random sample from these problems cannot
be done efficiently unless RP = NP. These statistical models were introduced (in
many cases) decades before the corresponding graph theoretical problem was shown
to be NP-hard.

Recall that a problem is in NP if it is a decision problem where a certificate
that the answer is true may be checked in polynomial time. Problems in this class
include determining whether a boolean expression is satisfiable or whether or not
a graph has a proper 3 coloring. Optimization versions of problems in NP include
the traveling salesman problem and integer programming.

The class §P is the set of problems where the goal is to count the number of
accepting certificates to a problem in NP. For example, consider once more the
problem in NP of finding an assignment of variables which leads to a given Boolean
expression being true. The corresponding problem in §P is to count the number
of assignments which lead to the expression being true. Clearly a problem in §P
is more difficult than one in NP, since if we know how many assignments are true,

then we certainly know if at least one assignement is true.
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Given the difficulty of solving a §P problem exactly, the logical question is, when
can we develop algorithms which approximate the true answer? For most of these
problems, the ability to sample from the distribution of interest immediately yields
such an approximation algorithm [26].

The statistical physics models we consider are interesting for their ability to
model and predict real world substances, and also for their theoretical properties.
Often these models exhibit a phenomenon known as a phase transition, where a
small change in the parameter of the model leads to an enormous change in the
macroscopic properties of the distribution. Phase transitions are often linked to the
speed at which a Markov chain simulation runs. Roughly speaking, on one side of
the phase transition a chain may be rapidly mixing, but on the other side it may
converge very slowly.

This behavior is similar to that of the NP-complete problems related to these
models. It is well known that for many problems approximating an answer to an
optimization problem to within a certain constant or higher may be possible in
polynomial time, while any improvement in that constant leads to a NP-complete
problem.

For all the models we consider, the sample space will be the colorings of a graph,
that is, Q@ = CV where V is the vertex set of a graph (V,F) and C = {1,...,Q}
is a set of () colors. This contains a wide variety of problems, from generating a
random permutation (where Q C V") to mixture models of gases. Often the graphs
considered in these model are simple lattices in 2 or 3 dimensions, although they

will be defined for arbitrary graphs. Throughout this work we will use n to refer to
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the number of nodes in the graph, and m to refer to the number of edges.
Of course, not all of the models we will consider come from statistical physics. We
also present problems arising from database searches and the numerical evaluation of

statistical tests, as well as several models of interest for their theoretical properties.

2.1 The Ising model

Perhaps the most venerated model in statistical physics is the Ising model. (This
is sometimes called the Lenz-Ising model since Lenz first proposed it to Ising, who
was his student at the time.) The model is quite simple, yet contains within it the
phase transition behavior mentioned earlier.

The model was first introduced as a model of magnetism. More recently it has
found use as a model of alloys, and for Quantum Chromodynamics computations.
The idea is simple. Our color set consists of two colors C' = {—1,1}. Following the
use of the Ising model as a model of magnetism, we shall refer to nodes colored 1
as spin up and nodes colored -1 as spin down.

A configuration x consists of an assignation of colors to each of the nodes of the
graph (V) E'). The Hamiltonian of a configuration H(x) is set to be

H(z) = - Z a5 (i)z(7)-
(i,))eE
The « variables measure the strength of interaction across a particular edge. Al-
though the methods we will discuss can deal with the case of arbitrary «, for sim-

plicity we will assume that every o j is 1.
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The Ising model is a probability distribution on the set of configurations. The

probability of selecting configuration x is

r(a) = ST H @)/ (RT)} + 55, Bya(v)
Zr :

Here J is either 1 (for ferromagnetism) or -1 (for antiferromagnetism), B is a pa-
rameter that measures the external magnetic field, k is Boltzman’s constant, 7" is
the temperature of the model, and Z; is the value which makes 7 a probability
distribution, i.e., the normalizing constant. Often, Z7 is referred to as the partition
function.

It will be helpful to gain some intuition about how the parameters interact.
Suppose we are dealing with the ferromagnetic Ising model (J = 1). Note that
—H(z) is large when the values of (i) and z(j) for an edge (i,j) are the same.
Hence a configuration where the endpoints of edges receive the same color is more
likely than a configuration where they are different. Physically, this means that the
spins tend to line up, making for a stronger magnet.

If J = —1 (antiferromagnetism) then the highest probability states are ones
where the endpoints of edges are colored differently. Here the Hamiltonian is largest
when spins do not align.

The value B, measures the presence of an external magnetic field that biases
the configuration towards either spin up or spin down at the node v. While the
techniques that we use can be modified to incorporate a nonzero B, for simplicity
we will always take B to be 0.

The temperature measures how free the spins are to fight their natural ferro-
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magnetic or antiferromagnetic tendencies. When the temperature is very high, 7 (x)
is roughly 1/Z regardless of the value of H(x). In this case, all the configurations
are equally likely, and each individual node is almost as likely to be spin up as spin
down.

When T is very small, only states with very large H(x) have significant probabil-
ity of occurring. For instance, in the ferromagnetic state with high probability most
of the states will be pointing in the same direction. This means that the state tends
to exhibit long range behavior, where the spin of two nodes on the opposite sides of
the graph are highly correlated. The distribution 7 changes smoothly with 7", and
so there is a point where these long range correlations start to appear. Roughly
speaking, this is the idea behind phase transitions.

Technically, phase transitions involve discontinuities in properties of the graph,
and so truly only occur in graphs with an infinite number of nodes. However, even
for relatively modest size graphs, the presence of a phase transition will result in
large changes in the properties of a graph with small changes in a parameter such as
T. One of the reasons for the primacy of the Ising model in statistical simulations
is the fact that this simple model exhibits a phase transition for graphs such as
the 2 dimensional lattice. Phase transitions are of course prevalent throughout the
physical world, for instance, the process of ice turning to water is a phase transition.

The constant k£ is Bolzmann’s constant, and arises out of the statistical me-
chanical justification for the Hamiltonian in the Ising model. Note that z is a two
coloring, and therefore defines a cut of the graph. Let C'(x) denote the number of

edges which cross the cut (this is the unweighted value of the cut). Then as we have
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defined it, H(xz) = 2C(z) — m, where m is the number of edges in our graph. The
exp(m/(kT)) term in the exponential is a constant, so we may introduce a scaled
temperature 7" such that

__ exp{=JC@)/T)
Z

2.1.1 The antiferromagnetic Ising model and MAX CUT

There exists a very close relation between the antiferromagnetic Ising model and the
problem MAX CUT, which is the problem of finding the largest cut in an arbitrary
graph. This problem is known to be NP-complete, so if this problem could be solved
in polynomial time, then every problem in NP could be solved in polynomial time.
This makes it quite unlikely that an efficient solution to this problem will be found.

The probability of generating a particular cut from the antiferromagnetic Ising
model will be exp{C(z)/T}/Zr. When T = In2/n, 7(z) = (2*)°®)/Zr. Let the
configuration x,,,, be the coloring associated with the maximum cut in the graph.
There are only 2" — 1 other colorings of the graph, hence the total weight of cuts

which are of smaller size than the maximum is at most
2" - (2"YO (Tpmaz) — 1/ 727 < (2" (Tmaz) /21 = T(Tmaz)-

Hence with probability 1/2, a random sample drawn from this distribution will find
the maximum cut in the graph. In fact, when the graph is regular (all degrees of
the graph are the same) we may do much better.

Let A denote the degree of each node in the graph. We shall show that when

T = O(1/A), an algorithm for sampling from the Ising model leads to a constant
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factor approximation algorithm for MAX CUT.

Definition 2.1 Given a mazimization problem with optimal value OPT, and a poly-
nomial time algorithm which produces solutions with value ALG, we say that it is
a p-approzimation algorithm if ALG/OPT > p. Similarly, if OPT is the opti-
mal solution for a minimization problem, we have a p-approximation algorithm if

ALG/OPT < p.

Theorem 2.1 Suppose that we have a graph of bounded degree A and an efficient

means for sampling from the Ising model on arbitrary graphs of mazrimum degree A

4T'In2

~—- Then if p > 0, we have a randomized

for some temperature T'. Let p =1 —

p-approximation algorithm for MAX CUT.

Proof: Let A(p) denote the set of configurations z such that C(z) < pC(Zmaez)-

Then

B exp{C(z)/T}
m(A) = %—ZT
exp{pC (Tmae)/T'}
Tz

T(Tmaz) |A|e’(1fﬂ)0(wmaz)/:r

IN

IN

nln2—(1—p)C(xmaz)/T

IN

T(Trmaz )€

In order to have 7(Zymez) > 7(A), we need nln2 — (1 — p)C(Xar)/T < 0, or

T < (1-p)C(Tmaz)/(n1n2).
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Since there are nA/2 edges, we know that a maximum cut contains at least

nA/4 edges. Therefore, if

(1—ppnA _(A-pA
~ 4nln?2 4In2

then we have a randomized p-approximation to MAX CUT.

It turns out that (even for bounded degree graphs) solving MAX CUT is not only
NP-complete, but APX-complete. Loosely speaking, APX is the set of optimization
problems such that there exists a bound p’ such that if a better than p-approximation
algorithm exists, then P = NP. For us this means (that unless RP = NP), there
exists a constant « such that no polynomial time algorithm exists for sampling
from the Ising model when T" < aA. It is not surprising, then, that in chapter 5 we
shall analyze an algorithm of Héggstrom and Nelander [17] and show that it runs
in polynomial time when 7" > 0.5A.

This all indicates the difficulty of even sampling from the antiferromagnetic Ising
model. The ferromagnetic Ising model is a different story, and in fact a polynomial
time algorithm exists [27] [42] that generates samples drawn approximately from

the distribution of the Ising model for arbitrary graphs.

2.2 The Potts Model

In the Ising model we had spin up and spin down, but we live in a three dimensional
world. It is easy to consider a model with spin up, down, right, left, into the plane

and out of the plane. In general, instead of using two colors we now use () colors.
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This is the Potts model, and it is an important generalization of the Ising model [39].
Let x be a coloring of the nodes using colors from C' = {0,1,...,Q — 1}. Then
C () now refers to the number of edges which cross the @ way cut determined by

x. As in the Ising model, we let

Ho) - ERAIC@)/T)
ZT ’

where J =1 for ferromagnetism and J = —1 for antiferromagnetism.

As with the Ising model, the antiferromagnetic Potts model is NP difficult to
sample from at arbitrary temperatures, with the reduction being to MAX ) CUT.
Unlike the Ising case, however, no method for sampling from the ferromagnetic
Potts model is known to run quickly at all temperatures. We will give a partial
answer to this question by analyzing two chains for the Potts model, single site

update and Swendsen-Wang.

2.3 The hard core gas model

In the hard core gas model, we again two color a graph. However, here coloring
a node 1 means that a gas molecule occupies that node, while the color 0 means
that it is empty. These molecules take up a fixed amount of space, the core of the
molecule. These cores are “hard” and so are not allowed to intersect. In our model,
this means that no two adjacent nodes contain gas molecules. One way to enforce
this condition mathematically given a coloring x is to require that z(i)xz(j) = 0 for
all edges (i,7). Let n(x) = >, z(v). If we think of the configuration x as defining

the locations of a set of gas molecules, then n(x) represents the number of molecules



22

in the configuration. The distribution over this configurations is

A\n(@)
Zy

m(z) =

where ) is a parameter known as the activity or fugacity.

This type of set, where no two nodes which are adjacent are both in the set,
is known as an independent set. Just as the Ising model is a close relative of
MAX CUT, the hard core gas model is closely linked to the problem of finding the
maximum independent set of a graph, which is an NP-complete problem. When
A > n, then with probability at least 1/n the largest independent set in the graph
is chosen. In fact, Dyer Frieze, and Jerrum showed [11] by reduction to a different
N P-complete problem that it there does not exist an efficient means for sampling
from this distribution when A = 1 and A = 25 unless RP = NP, even when the

graph is restricted to be bipartite.

2.4 The Widom-Rowlinson mixture model

Related to the hard core gas model is the Widom-Rowlinson mixture model [49].
In this section we consider a discrete version of the model [31]. Suppose we have
Q different types of substances in a mixture. Particles of substance ¢ are allowed
to be close to one another. However, two adjacent sites cannot be occupied by two
different substances. Mathematically, C' = {0,1,...,Q}, with the color 0 indicating
that a site is empty and color 7 indicating that a particle of substance i occupies
the site. We require that for all edges (7, j) of the graph, either X (i) = X (j) or

X(i)X(j) = 0.
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Héggstrom and Nelander [18] gave an perfect sampling algorithm for this discrete
model when () > 3. Later we will present an improved algorithm for which sharper
running time bounds may be shown. In addition, in chapter 8 we will construct an

perfect sampling algorithm for the continuous case as well.

2.5 () colorings of a graph

As the temperature T" drops in the antiferromagnetic Potts model, more weight is
given to those states where the size of the cut is the entire graph. In other words,
the highest weight is given to colorings where the endpoints of an edge have different

colors.

Definition 2.2 A @ coloring of the nodes of a graph is proper if the endpoints of

each edge in the graph have different colors.

One way of defining the distribution when 7" = 0 is to give equal weight to a proper
@ coloring of the graph, and 0 weight if the endpoints of an edge are given the same
color.

Jerrum [25] constructed a Markov chain for sampling uniformly from the color-
ings of a graph when () > 2A. It is NP-hard to determine if there is a coloring
when ) = A, and for Q = A +1 the chain of Jerrum is not connected. However, for
A+1 < Q < 2A very little is known about the behavior of the chain. In chapter 5
we give an perfect sampling algorithm for this problem (also independently given

in [18]).
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This problem of sampling from the () colorings of a graph also provides an easy
illustration for how a random sampling algorithm can be turned into an approximate
counting algorithm. The problem of counting the number of ) colorings of a graph is
a §P-complete problem. Suppose that £ > 2A, so we know from Jerrum’s work that
we have an approximate sampling algorithm. The work in [26] gives an algorithm
for creating an perfect sampling algorithm that runs in O(mTgs) time, where Tgg
is the time needed to take a random sample. We present here an algorithm that

runs in O(nTgg) time.

2.6 Sink Free Orientations of a graph

Given an undirected graph, a sink free orientation is an assignment of directions to
edges such that no edge has outdegree 0. The problem of computing the number of
sink free orientations of a graph is §P-hard [6], and is also a special case of evaluating
the Tutte polynomial of a graph, making this problem of theoretical interest. As
with the other problems we consider, this one may be formulated as a coloring.
Suppose that we have an edge e = {i,j} where i < j. Then if we have in our
coloring x(e) = 1, the edge is oriented (i,7j), but if z(e) = —1 the edge is oriented
(j,4). To be sink free, we require that >, ;(—2({i,j}) —1) + ;s (z({¢, j}) —1) > 0

for all nodes 7.
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2.7 Hypercube slices

A hypercube may be thought of as having state space {0, 1}" where n is the dimen-
sion of the cube. Edges exist between any two points in the state which differ by
at most one coordinate (so that changes only occur parallel to the coordinate axis).
Each possible state is considered equally likely.

If the k colorings of a graph may be considered the zero temperature limit of the
Potts model, then the hypercube chain may be thought of as the infinite temperature
limit. Here each possible configuration is equally likely, and the coloring of a site
(coordinate) is completely independent of the other coordinates.

A restriction of the hypercube is used to study instances where we wish the
magnetization is the Ising model to remain constant [50]. Recall that for the Ising
model, the magnetization is the number of nodes colored 1. In the hypercube slice
model, we restrict the set of allowable configuration. Let L and U be integers with
L < U. Then the state space of the hypercube slice model is those points in {0, 1}"
satisfying L < 3, z(i) < U. If L is close to U, then the magnetization will be

roughly constant.

2.8 Applying the Monte Carlo method

All the models discussed above are probability distributions, and the question of
interest is how to sample efficiently from these distributions. For decades, construc-
tion of Markov chains has been possible for these problems and others by using

some basic techniques. We next explore the most successful of these techniques.



Chapter 3

Building Markov chains

On two occasions I have been asked [by members of Parliament], ‘Pray,
Mr. Babbage, if you put into the machine wrong figures, will the right
answers come out?’ I am not able rightly to apprehend the kind of
confusion of ideas that could provoke such a question.

-Charles Babbage

Perhaps the earliest Monte Carlo algorithm (outside of astrology) is a method
for finding the value of the numerical constant 7 dating back to the 1600’s. This
method involved flipping a toothpick onto ruled paper and measuring the number
of times the toothpick crossed the lines, and was used by some to while away the
time [5]. Even at that time, far better methods existed for approximating 7, as this
method is agonizingly slow.

With a computer, pseudorandom numbers can be generated by the millions,

and used to drive a Markov chain towards its stationary distribution. As Babbage
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notes, however, the “right figures” must first be put into the machine. In our case,
that means that we must be able to construct a Markov chain whose stationary
distribution is the same as the distribution given by our probabilistic models.
Broadly, these chains fall into two classes, local update chains and nonlocal
update chains. Recall that for all of our problems, 2 = C'" consists of the colorings
of a graph. Local update algorithms take advantage of this structure by updating
the colors on only one or two nodes at a time. Nonlocal update algorithms are often
far less intuitive than their local counterparts, but many times can avoid regions
where local chains are not rapidly mixing by changing the color of many nodes

simultaneously.

3.1 Conditioning chains

The reason why we cannot sample directly from these distributions 7 is that they
are defined as 7(z) = w(z)/Z where w(z) is an easily computable weight function,
and Z is an unknown normalizing constant that is often very difficult to compute.
Conditioning will allow us to eliminate the need to know Z when taking a step.
As an example, consider the hard core gas model, where the desired distribution
is m(z) = A"(®) /Z,. Here the weight function is trivial to compute, but finding 7, is
#P hard [33]. Suppose that someone else has generated a random sample and sent
it to us, however, the color at node v is missing. All of the other color data came
through just fine. We now seek to create a new random sample from 7 conditioned

on the values of the colors at all nodes other than node v.
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If one of the neighbors of v is colored 1 (that is, included in the independent
set), then we did not need the missing data since v must be colored 0. However,
if all the neighbors of v are colored 0, then two configurations are possible. We
wish to choose random X (v) given X (V' \ {v}). Note that n(X) when X (v) =1 is
exactly 1 more than n(X) when X (v) = 0. Let x; denote the configuration where

v is colored 1 and z(y denote the configuration where v is colored 0. Then

P(X =)
PX(V\{v}))
P(X =)
P(X =x1) 4+ P(X = x)
V@D 7+ A0 7

PIX = | X(V\ {v}) = 2(V\{v})] =

A
A+1
Similarly, it is easy to show that

P(X = X(V\ {o}) = 17

A wonderful thing has occurred, in that Z, was canceled out in the computation.
This is not an accident, but a general feature of conditioning arguments.

More generally, suppose that we know the value of a configuration on all but
a small set of nodes Vi (here the U in the subscript stands for unknown). Then
z(Vy) is the coloring of Vi, and z(V \ Vi) is the coloring on the remaining nodes,
so that (z(Vy),z(V \ Viy)) describes a complete configuration on V. Given part of
a configuration z(V \ Viy), we can randomly extend it to a complete configuration

by using
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w((@(Vy), 2(V\W)))/Z
PX(V\Vy =z(V\W)))
w((@(Vy), =(V\ Vi)
Em(VU)w((m(VU)vx(V\VU))).
w((x(Vy),z(V\ W)))/Z
o) w((@(Ver), 2(V\W)))/Z°
w((z(Viy), =(
> e (Vi (Vo)

PIX(V) = x(V)IX(VA\Vy) =2(V\Vo)] =

8

((z(Vy),z(V\ Vi)
2vi) W((x(Ver), z(V\ Viy)))

Again, the normalizing constant Z has dropped completely out of the picture. The
general conditioning chain, then, picks some subset of nodes at random, discards
their value, and then replaces the colors on the subset by randomly extending the

remaining coloring.

3.1.1 The Heat Bath chain

The heat bath chain is a special case of conditioning chains where the probability
distribution on Vi does not depend upon the current state of the chain. It works
like this. A set Vs is chosen at random and the colors on those nodes are discarded.
The colors are then replaced randomly by choosing colors for Vi, from 7 conditioned
on the values of the colors at all of the other nodes. At every step we use the same
distribution on subsets of V' for choosing our random V. Often Vi is a randomly
chosen dimension/node of the state space.

To describe choosing random numbers, we use a €y A to denote the act of

choosing an element of A uniformly from that set. We will use a €z A to denote
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choosing a from A at random according to an arbitrary distribution. Because we
are choosing Vy; and only updating that portion, often the value of z(V '\ Vi) is
clear from context. Therefore, for notational convenience, we will use w(z(Vy)) to

denote w((z(Vy),z(V \ Vi))).

The general heat bath Markov chain

Input: X, € OV
w a weight function on Q = CV
p a distribution on subsets of V'

Set X = X,

Choose Vi € 2V according to distribution p

Choose X (Vi) €g C7 according to
P(X(Vy) =x(Vy)) = w(z(V)))

T v, @@ )
Set Xt+1 =X

Figure 3.1: The general heat bath Markov chain

Reversibility allows us to show that this chain has the desired stationary distri-
bution 7 = w/Z. Two states x; and x5 are connected if their colors differ on a set
vy which has positive probability of being selected (p(vy) > 0). There can be more
than one set vy for which this is true. Let Vy denote the set of subsets of V' that
contain all the nodes on which z; and x, have different colors. We now show that
the heat bath chain is reversible. Let x; — x5 denote the event that configuration

moves from state x; to x5 at one step of the Markov chain.

T(z1)P(x1 = 22) = w(x1) Y ploy)P(z1 — 22|V = vy)

_ “’(;"1) S b0 Pl = 22V = w)
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Single site hard core heat bath chain

Set X = X,
Choose a vertex v uniformly at random from V'
Choose U uniformly from [0, 1]
If U < {15 or a neighbor of v is colored 1
Set X (v) =0

Else

Set X (v) =1
Set Xt+1 =X

Figure 3.2: Single site hard core heat bath chain

- M v w(zs)
-z vyze;)yp( U)Zm(V\VU) = z2(V \ Vi)w(z)

_w(xa) v w(zy)
- UUXQ:/UP( ) Yea\vy) = T1(V\ Vr)w(z)

= Zp(vU)P(xg — x|V = wy)

In the single site update algorithm for the hard core gas model, Vs is chosen to
be a single vertex v with probability 1/n. The probability of setting X (v) = 1 and
X (v) = 0 are exactly those computed in the previous section, so we know that this
chain has the correct distribution.

Suppose that the graph is bipartite with V' = V;, U Vg, where each edge has an
endpoint in each of V7, and Vi. Then the neighbors of any node in V7, lie only in
Vg, and neighbors of V5 all lie in V. This allows us to switch all of the values of

Vi or Vg simultaneously. This is definitely nonlocal, since the average number of
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Nonlocal hard core heat bath chain

Set X + X,
Choose Vi; to be V, or Vi each with probability 1/2
For each vertex v in Vj;
Choose U uniformly from [0, 1]
If U < 115 or a neighbor of v is colored 1
Set X(v) <0
Else
Set X(v) « 1
Set Xt+1 +— X

Figure 3.3: Nonlocal hard core heat bath chain

nodes which can be affected in a move is n/2.

3.2 Metropolis-Hastings

Metropolis-Hastings chains [35] take a rate approach rather than a conditioning
approach. This approach works best when all of the possible colorings for Vi, are
roughly equal in value.

In the heat bath chain, we chose Vy, threw away the colors on those nodes,
and then replaced them according to the conditional probability. In a Metropolis-
Hastings type algorithm, we attempt to change the values on V;; and sometimes
reject the change if it would lead to a state with lower weight.

Again reversibility is used to show that this chain has the desired stationary
distribution. As before, suppose that x; and x, are two states with positive weight

where the set of subsets Vy containing all nodes with different colors has positive



The general Metropolis-Hastings Markov chain

Input: X, € CV
w a weight function on Q = CV
p a distribution on subsets of V'

Set X + X,
Choose V;; at random according to p
Choose z(Vy) uniformly at random from C''7
If w((z(V), X(V\ Vu)) = w(X)

Set X(VU) — .’L‘(VU)
Else

Choose U uniformly at random from [0, 1]

If U < vl

Set X(VU) — .’L‘(VU)

Set Xt+1 +— X

Figure 3.4: The general Metropolis-Hastings Markov chain

weight in p. Then without loss of generality, let w(z;) < w(xy).

and

m(x)Plry = x2) = w(z1) Y, plog)Plzr — 2| Vy = vpy)

vy EVY

w(xy) 1
7 ZP(UU) |C’|\UU\

vu

T(x2)P(x2 = x1) = w(x2) Y p(ve)P(z2 — 21|V = vp)

_ w(m) w(@1)/w(w2)
7 ZP(UU)W
w(xy) 1

= 7 ZP(UU)|C|‘UU‘

vU

vU
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so they are equal and the Metropolis-Hastings chain is reversible with the correct
distribution.
Applying this to the specific example of the hard core gas model, we have the

following. When the color chosen for v is 1 and no neighbors have color 1 already,

Single site hard core Metropolis-Hastings chain

Set X + X,
Choose a vertex v uniformly at random from V'
Choose c uniformly from {0,1}
If ¢ =1 and v has no neighbors colored 1
Set X (v) « ¢
Else
Choose U uniformly at random from [0, 1]
IfU < +
Set X (v) « ¢
Set Xt+1 +— X

Figure 3.5: Single site hard core Metropolis-Hastings chain

then setting v to 1 raises the weight of the configuration, so we always proceed.
If, however, the color chosen for v is 0 then the weight might drop from A\™®) to
An(#)=1 The smaller over the larger of these weights is 1/, so with this probability
we switch a 1 to 0.

As with the heat bath, when the graph is bipartite these ideas may be used to

construct a nonlocal algorithm as well.
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3.3 The acceptance rejection heat bath chain

An idea which will come in handy later in a particular implementation of the heat
bath chain we will call the acceptance rejection heat bath chain. The transition
probabilities are exactly the same as for the heat bath chain, the difference lies in

how a generate a Markov chain step. In words, what we do is having selected the

The general acceptance rejection heat bath Markov chain

Input: X, € CV
w a weight function on Q = CV
p a distribution on subsets of V'

Set X + X,
Choose Vi € 2V according to distribution p
Set M > max{w(xz(Vy))}
Repeat
Choose X (V) €y CVv
Choose W €y [0, 1]
Until W < i)

M
Set Xt+1 +— X

Figure 3.6: The general acceptance rejection heat bath Markov chain

portion of the chain to change, we then select a coloring for that portion uniformly
at random. We then test a uniform against the weight of that coloring (normalized
against M, an upper bound on the weight). If the test accepts, we accept the value,
and if it rejects, we choose another coloring and try again.

Although the form is similar, this chain is not the Metropolis-Hastings chain!
It is simply another formulation of the heat bath chain, as shown by the following

theorem. This theorem is not new, and is a staple of courses in stochastic processes.
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Theorem 3.1 The probability that the node set Vi; is given coloring x(Vyy) by the

acceptance rejection heat bath chain is

PX (Vo) = z(VW)) =

Proof: We do a first step analysis, computing the probability that X (Vi) = z(Viy)
and we rejected the color chosen in the first step plus the probability that X (Vi) =
z(Vy) and we accept the color in the first step. Let ACCEPT denote the event that

we accept the first step, and REJECT denote the event that we reject the first step.

P(X(Vy) =2(Vi)) = P(X(Vy) = «(Vy), ACCEPT)

+P(X (Vi) = z(Viy), REJECT)
1 w(z(Vy))

Q M
+P(X(Vy) = 2(Viy) REJECT) P(REJECT)

When the first step rejects, we start over, so

P(X (Vo) = z(Vy) REJECT) = P(X(Vy) = 2v),

and
POV = () = 5+ o)
+P(X(Vy) = z(Vy))P(REJECT)
P(X(Vy) = 2(V))[1 — P(REJECT)] = % : w
| 1 w(@(V))

P(X(Vy) = 2z(Vy)) m ' 0 : i



which completes the proof. O

As an example, we now present the single site heat bath chain for the hard core

gas model as an acceptance rejection chain (the version here is for when A > 1).

Acceptance rejection single site hard core heat bath chain

Set X + X,
Choose a vertex v uniformly at random from V'
If a neighbor of v has color 1
Set X(v) =0
Else
Repeat

Choose ¢ € {0,1}

Choose U €y [0, 1]
Untilc=1or (c=0and U < 1/))
Set X (v) ¢

Set Xt+1 +— X

Figure 3.7: Acceptance rejection single site hard core heat bath chain

3.4 The Swap Move

Broder first introduced what we will call the “swap move” for a chain for generating
matchings of a graph. Basically, the idea is that if the color of exactly one neighbor
prevents a chosen site from being colored according to the heat bath distribution,

then change the color of the neighbor to accommodate the color of the chosen node.
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Broder applied this move to construct a chain for sampling from the set of perfect
matchings of a graph (used in approximating the permanent of a 0-1 matrix). This
chain was later shown by Jerrum and Sinclair [27] to be rapidly mixing.

Dyer and Greenhill applied this technique to the hard core gas model, thereby
improving the ability to analyze the chain. We will apply this move to several chains,
including the continuous hard core gas model, and the discrete and continuous
Widom-Rowlinson mixture models.

Suppose we are using the single site heat bath chain for the hard core gas model.
When v has any neighbors colored 1, we are unable to turn v to 1. Suppose however,
that exactly one neighbor of v is colored 1, with the rest colored 0. Then a valid
move (in that it stays in the state space) would be to swap the color of v with its
neighbor with some probability psyqp. This chain is presented in figure 3.8

Proving that this chain preserves the stationary distribution may be accom-
plished via a direct application of reversibility. The new moves are symmetric, so

that if x and y are two configurations reached by a swap move then

A
P(l’,y) - P(y,.ﬁb’) :pswapm

and 7(x) = m(y). Therefore, clearly 7(z)P(x,y) = m(y)P(y, z) and these moves are
symmetric. Since in the old chain there was no probability of moving from = to y,
adding these moves preserves the stationary distribution.

Later, we will show how this swap move improves the performance of chains for

the continuous hard core gas model and Widom-Rowlinson mixture model.
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Dyer and Greenhill hard core chain step

Set X + X,
Choose a vertex v uniformly at random from V'
Choose U uniformly from [0, 1]
Case 1: v has no neighbors colored 1 in X;, then
If U < 25
Set X(v) «+ 1
Else
Set X(v) <0
Case 2: v has exactly 1 neighbor w colored 1
IfU < pswapH_L)\
Set X (v) < 1, X(w) <0
Else
Set X(v) <0
Set X;,1 + X

Figure 3.8: Dyer and Greenhill hard core chain step

3.5 The Ising and Potts models

We present here the single site heat bath update chain for the Ising and Potts
models. The Metropolis-Hastings chain is constructed in a similar fashion.

For a vertex v, let b,(c) denote the number of neighbors of v which have color
c. (The b stands for blocking, as these colors tend to block v from receiving color ¢
in antiferromagnetic models.)

As with many local update chains, the fact that we are picking vertices at random
indicates that we must run for at least nlnn steps before we have any reasonable
chance of modifying all the nodes. A nice feature of this chain is that when the

temperature 7' is large enough, then O(nlInn) steps suffice for this chain to mix.
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Single site Potts heat bath chain

Set r <+ Xt

Choose a vertex v uniformly at random from V'
exp(—Jby(c)/T)

ec exp(—Jby(c')/T)

Choose c € C' according to 5

Set x(v) + ¢
Set Xt+1 +— X

Figure 3.9: Single site Potts heat bath chain
3.5.1 Antiferromagnetic Potts model at zero temperature

Recall that the problem of uniformly sampling from the @) colorings of a graph may
be thought of as the zero temperature limit of the antiferromagnetic Potts model.
The heat bath chain for this problem is straightforward, since all proper colorings
of the graph have the same weight. We begin by making our notion of blocking

more precise.

Definition 3.1 A color ¢ blocks or neighbors a node v if a node adjacent to v has

color c. A color ¢ which is not blocking for v is nonblocking.

Single site () coloring heat bath chain

Set z + X,

Choose a vertex v uniformly at random from V'

Choose c uniformly from the set of nonblocking colors for v
Set x(v) = ¢

Set Xt+1 =X

Figure 3.10: Single site ) coloring heat bath chain



41

3.5.2 Swendsen-Wang

Swendsen-Wang is a nonlocal chain for the ferromagnetic Ising and Potts models
which utilizes the random cluster viewpoint. It has the advantage of being prov-
ably faster than the single site update model under low temperature conditions.
Although this model is known not to be rapidly mixing for all temperatures [15], it
is in widespread use as a means for generating samples from the Potts model.

The Swendsen-Wang procedure has two phases. In phase 1, the coloring of the
graph is used to divide the nodes. An edge is placed between two nodes if the
endpoints of those nodes receive the same color. The connected components of this
graph are connected sets of nodes of the original graph that have the same color.
Each of the edges of this graph are randomly (and independently) removed with
probability 1 — p, where p = 1 — exp(—1/T) is high when the temperature is high
and close to 0 when the temperature is low. Once this has been accomplished, the
number of connected components will be even higher.

In phase II, the remaining connected components are each assigned a color uni-
formly and independently from C' = {0,...,Q—1}. All the nodes in that component
are assigned this color. For a subset of edges A let C(A) denote the set of connected
components of A, and let C, denote the lowest numbered node in a connected
component. This is written algorithmically in figure 3.11.

Swendsen and Wang [48] both introduced this chain and showed that it has the
correct stationary distribution. We will present an analysis of the mixing time of

this chain, a result similar to that proved recently by Cooper and Frieze [8].
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Swendsen-Wang Step

Set x + X,
Let A+ {{v,w} € E:2(v) =z(w)}
For each edge e € E set U(e) €y [0,1]
For each node v € V set ¢(v) €y {0,...,Q — 1}
For each edge e € A

IfU(e) <1—p

Set A<+ A\ {e}

For all C € Cy

Set X (w) < ¢(C,) for all w € C
Set X, | <=

Figure 3.11: Swendsen-Wang chain

3.6 Sink Free Orientations

As noted in the previous chapter, the problem of generating a sink free orientation
of a graph can be seen as have state space 2 = {—1,1}¥ where the two colors for
each edge refers to the two possible orientations of that edge. A heat bath chain
for this problem picks an edge at random and then randomly picks an orientation

that does not create a sink.

Single edge heat bath sink free orientations chain

Set z + X,

Choose e €7 E

Choose c uniformly from the set of orientations that
do not create a sink in the graph

Set z(e) + ¢

Set Xy <=

Figure 3.12: Single edge heat bath sink free orientations chain
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3.7 Widom-Rowlinson

We present several chains for the Widom-Rowlinson model. First we consider the lo-
cal heat bath chain of [18], then a discrete version of a nonlocal chain for continuous
Widom-Rowlinson due to Haggstrom, van Lieshout, and Mgller.

Recall that in the Widom-Rowlinson model nodes are either assigned a color
from {1,...,Q} which indicates the type of particle occupying the site, or a 0
indicating that that site is unoccupied. If ¢; is the number of sites occupied by the
ith particle type, then the distribution is A{* - - -)\ZQQ /7.

The heat bath chain chooses a node uniformly and then changes the color of

that node conditioned on the remaining nodes.

Single site heat bath discrete Widom-Rowlinson chain

Set x + X,
Choose v €, V
Case 1: All neighbors of v are 0
Choose c € {0,...,Q} so that P(c=0)=1/(1+>; \)
and P(c=1) = XN/(1+>;\) forall 1 <i <@
Case 2: All the neighbors of v are either 7 or 0
Choose c € {0,...,Q} so that P(c=0)=1/(1+ \;)
and P(c=1) = XN/(1+N\)
Case 3: Two neighbors of v have different positive colors
Set ¢+ 0
Set x(v) « ¢
Set Xt+1 —x

Figure 3.13: Single site heat bath discrete Widom-Rowlinson chain

The nonlocal chain takes a more direct approach. At each stage all the points

of a chosen color are removed from the chain. Then new points of that color are
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put back in the chain according to the stationary distribution conditioned on the

positions of the remaining colors. In the next chapter we will see that these two

Nonlocal conditioning discrete Widom-Rowlinson chain

Set xr + X,
Choose i €y {1,...,Q}
For all v such that all neighbors of v are either 0 or i
Choose c € {0,i} so that P(c=0) =1/(1+ \;)
and P(c=1)=XN/(14+\)
Set x(v) < ¢
Set Xt+1 —x

Figure 3.14: Nonlocal conditioning discrete Widom-Rowlinson chain

chains have roughly the same performance.

A birth death type process looks at Widom-Rowlinson from a different point
of view. Let x; be the set of nodes colored 7 in a configuration x. Then the birth
death approach says that at each time step, a point of color 7 is “born” at a specific
node with probability A;/[n(1 + X; A;)]. A particular point “dies” with probability
1/[n(1 + >; A;)], by which we mean the point is removed from z; by setting the
color of the point to 0. Algorithmically, the process is described as follows. Say
that a color 7 is blocked at node v if either v or a neighbor of v has a positive color
different from 7. Reversibility is easily seen to be satisfied with this chain, which
has a slightly worse performance bound than the single site heat bath chain. We
introduce it here because it is easy to add a “swap” type move which will increase
the range of \; over which we may prove that the chain is rapidly mixing.

In the vanilla birth death chain, if a color is blocked when it tries to be born, it
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Birth death discrete Widom-Rowlinson chain

Set x < Xt
Choose U €y [0, 1]
Set po < 1/(1+ X M)
For all 0 <i < @
Set p; <= Ai/(1+ X \i)
Choose i € {0,...,Q} according to p
Choose v €5 V
Ifi=0
Set x(v) < 0
Else
If color i is not blocked for node v
Set xz(v) =i
Set Xt+1 —x

Figure 3.15: Birth death discrete Widom-Rowlinson chain

simply fails to be born. If however, a point is blocked by only a single point in v and
the neighbors of v, our swap move will remove the blocking point, and introduce

our point in its place.

3.8 The Antivoter model

The antivoter model is one of two models we will consider where the chain itself
is part of the model. Throughout this work, the discussions and results for the
antivoter model is joint work with Gesine Reinhert.

Naturally, the antivoter model is closely related to the voter model. Suppose
that we have C' = {0,1}. At each step of the voter model, a vertex is chosen at

random, and the color of the vertex is changed to be the same as a randomly chosen
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Birth death swapping discrete Widom-Rowlinson chain

Set x + X,
Choose U €y [0, 1]
Set po < 1/(1+ % \i)
For all 0 <i < @
Set p; <= Ai/(1+ X \i)
Choose i € {0,1,...,Q} according to p
Choose v € V
Ifi=0
Set x(v) < 0
Else
Case 1: color i is not blocked for node v
Set x(v) « i
Case 2: color i blocked by exactly one node w € {v U neighbors of v}
If U < pswap
Set x(v) < i
Set z(w) <+ 0
Set Xt+1 —x

Figure 3.16: Birth death swapping discrete Widom-Rowlinson chain

neighbor. (This may be used to model forest fires and the spread of infectious
agents.) This chain has two absorbing states where the colors of all of the nodes
are the same. We will call such a state unanimous.

In the antivoter model, again a vertex is chosen uniformly at random, but now
the color of the vertex is changed to the opposite of a randomly chosen neighbor.
Unlike the voter model, the antivoter model (on graphs that are nonbipartite) state
space is connected (except for the unanimous states, which once left are never
reached again) and has a unique stationary distribution on the states [1]. However,
this chain is not reversible. Given a state where v is surrounded by nodes colored

1, then v can move to being colored 0, but cannot move back to being colored 1.
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The Antivoter model chain step

Set xr + X,

Choose a vertex v uniformly at random from V'
Choose a neighbor w of v uniformly at random
Set z(v) + 1 — z(w)

Set X;,, + X

Figure 3.17: The Antivoter model chain step

Therefore P(z,y) > 0 but P(y,z) = 0 for some = and y, and the chain cannot be
reversible. This is the only chain we will consider in this dissertation which is not

reversible.

3.9 The List Update Problem

The list update problem is the second problem we will consider where the chain
itself is part of the problem. Throughout this work, the discussions and results for
the list update problem is joint work with James Fill.

Suppose that we have a list of n items arranged in order p(1), p(2),. .., pu(n) (in
other words, y is a permutation). Requests come in for items, which must be served
by starting at the beginning of the list and moving inwards until the item is found.
Therefore it takes p(7) time to locate item i.

When an item is found, we are allowed to bring it forward, that is, move it to
any position in the list prior to (i) without cost. In addition, we may transpose
any two adjacent items in the list at cost 1.

Given this situation, there are several strategies one might consider for rear-
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ranging the items based upon requests. For instance, in the move to front (MTF)
method, when an item is selected it is moved to the front of the list. Sleator and
Tarjan [47] showed that no matter what the sequence of requests, this protocol is
worse than the optimal solution where all requests are known ahead of time by at
most a factor of 2.

This is a worst case analysis of the problem. Another approach is to use average
case analysis, where the set of requests is a stochastic process, and the goal is to
find the procedure which minimizes the expected costs of serving the process.

Consider the move ahead one (MA1) protocol. In this method, instead of the
selected item moving to the front, it is instead placed ahead 1 position. Unlike
the MTF method, this method has no nontrivial guarantee on the value of the
solution it delivers. Suppose the list is ordered 1,2,...,n, and the set of requests
isn,n—1,n,n—1,.... Then the MA1 chain will always require n time to service
a request, when the optimal (offline) solution is to move n — 1 to the first position
and n to the second and hold them there, resulting in an average cost per query of
3/2.

The worst case for MA1 is horribly bad, but does the average case do better?
First, we must define what we mean by an “average input”. This is most often done
for the list update problem by considering the input as a stream of independently
identically distributed requests. The probability of requesting ¢ at each step is p;.

With this random set of requests, the list becomes a Markov chain, with random

requests altering the chain based on whether we use MTF, MA1, or some other rule.
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MA1 list update chain

Choose i € {1,...n} where probability of choosing i is p;
If u(i) > 1

Let a < (i)

Let j be the item such that p(j) = p(i) — 1

Swap i and j (set p(j) < a, p(i) < a —1)

Figure 3.18: MAT1 list update chain

MTF list update chain

Request i € {1,...,n} with the probability of choosing i is p;
If (i) > 1
Let a < p(i)
For all j such that u(j) < a
Set (j) < p(j) + 1
Set pu(i) =1

Figure 3.19: MTF list update chain

To compare the asymptotic behavior of these chains, we compute the stationary
distribution of the lists given the input distribution. The asymptotic cost is the ex-
pected cost of accessing an item from a stationary permutation. Rivest [45] showed
that under this scheme, the M A1 chain has lower expected cost at stationarity than
the MTF method. Of course, the best ordering under this probability distribution
is 1,2,3,...,n if p > ps > --- > n. However, we assume that we do not have
knowledge of the p;, and we only see the set of random requests.

We will use reversibility to derive the stationary distribution of the M A1 chain.

For the MA1 list update chain, consider the distribution

7TMA1(M) _ p?*u(l)pg*u@) - _pzfu(n)/z_
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Say that the edge connecting the permutations y and v works by switching adjacent

items ¢ and j.

n—p(l) n—u(2) o n—p(n)
Tarar(p)Pu,v) = P1 Do p " .
O A
N Z
— (Hk#,m&j pZ*“(’”) p?*[u(l)fl}p;zfu(z)pj
N Z

= (V)P )

Therefore mys 41 is reversible with respect to the MA1 chain. Moreover, this chain is
easily shown to be ergodic, so as our notation suggests, my;4; is the unique stationary
distribution of the MA1 chain.

The MTF chain is not reversible, since if an item moves from the back to the
front, there is no corresponding reverse move which places it in the back again.
However, it is easy to see what the probability is that when p is stationarity p(i) <
p(j7). Consider the process ..., o, ... which is stationary. With probability 1,
sometime before time 0 either 7 or j was selected. Then pg(i) < po(j) if at the last
choice of i or 7, ¢ was selected. Similarly, if j was selected at the last choice of j or
i, then po(j) < po(7). Therefore, conditioned on the fact that the last choice was
either 7 or j, the probability that ¢ was chosen is just

P(po(i) < po(f)) = pii):pj'

Now suppose that we wish to compute the expected time needed to access an

item of 9. The time needed to access an item is 1 plus the number of items which
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proceed it, so

Flaccessi] = 1+ Z E1 () <o ()]
J#i
= 1—|—ZP,UO ) < po(7))
JFi

S

j#i Di + pj

Each item 7 is chosen to be accessed with probability p;, therefore

Elaccess|] = Zp,

1+

7 pi + p;

— 142 BPL
1<j<i<n Pi T Dj

a result shown in [30], [19], [7], and [34].

Now lets upper bound P(p(i) < po(j)) for the MA1 chain. Suppose that we
know the positions of all items other than 7 or j. Denote the smaller of the two
remaining positions a, and the larger b. Then there are two possibilities left for ¢
and j, one with 7 at position a and j at position b, with relative weight p;~“p;~ b
The other possibility is that j is at position a and ¢ is at position j, with relative

weight pzpj Therefore, the probability that ¢ < j given the position of all items

other than 7 or j is

b—
Py P
p?bna+p?anb p?pga+pba0

Now b —a > 1, so this probability is at most p;/(p; + p;). In fact, many states of
positive weight of b — a > 1, in which case the probability that ¢ comes before j

is higher, at least p;/(p} + pj). (Note this second expression may be rewritten as
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pi/lpj(pj/pi) + pi)]. The p;/p; term in the denominator is less than 1, and so this
second fraction is greater than p;/(p; + p;).
Hence the sum over j not equal to i of E[1,,(j)<uo(i)] is lower for the MA1 chain
than for the MTF chain, and asymptotically it is guaranteed to perform faster.
Two questions remain. First, asymptotic efficiency is useless if the chain takes
too long to converge to its stationary distribution. Actually, we do not need to
measure mixing time here, but we do need some way of measuring how quickly the

average access time converges to the stationary average access time.

Adjacent transposition for M A1 distribution chain

Set xr + X,
Choose v €y {2,3,...,n}
Set i < z(v)
Set j « z(v—1)
Choose U €y [0, 1]
£ U < pi/(pi + pj)
Set x(v) « j
Set x(v—1) «i
Set Xy, <=

Figure 3.20: Adjacent transposition for MA1 distribution chain

Second, this analysis shows that the average asymptotic access time of the MA1
chain is lower than that of MTF chain, but it does not tell what that asymptotic
efficiency is. Moreover, for either chain to mix, the second to lowest probability item
must be selected (otherwise it may lie past the lowest probability item—a situation
with low probability). But this second lowest weight can be made arbitrarily small,

making the mixing time arbitrarily large. To simulate from the asymptotic distri-
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bution of the MA1 chain requires extra subsidiary chains with different transitions

but the same distribution as the M A1 chain.

Set r + X,
Choose w; €r {1,2,...,n}
Choose wy €y {1,2,...,n} \ {v1}
Set v; = min{wy, wy}
Set vy = max{w;, wo}
Set i «+ x(v1)
Set j « x(vq)
Set d < |v; — w9
Choose U € [0, 1]
If U < pf/(p! + p)
Set x(vs) + j
Set x(vy) « i
Set Xy =

Arbitrary transposition for M A1 distribution chain

Figure 3.21: Arbitrary transposition for MA1 distribution chain

For example, the adjacent tranposition chain does not request a specific item, but

randomly chooses a position, then swaps the position and the position immediately

preceding it according to the stationary distribution. Of course, there is no reason

why we must use adjacent transpositions. Arbitrary transpositions work just as

well.

Note that the average value of d chosen in this fashion is O(n).

For weights

which are different from one another by a factor of more than (14 ¢/n), this means

that the chance that the lowest weight item is placed first is on the order of e™¢.
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3.10 Hypercube slices

The heat bath chain for the hypercube is simple: choose a coordinate of the chain
uniformly at random, and then change that coordinate (again uniformly at random)
to either 0 or 1. When we are restricted to L < Y, (i) < U, we must modify the
heat bath chain to take this into account. When a switch would have the value of
> ; (i) moving below L, we simply hold at the current value rather than making the

switch. Similarly for when we hit U. This chain is of interest primarily because of

Heat bath hypercube slice chain

Set x + X,

Choose i € {1,...,n}

Choose ¢ € {0,1}

IfL<c+Yua(j) <U
Set x(i) « ¢

Set X, <=

Figure 3.22: Heat bath hypercube slice chain

its relationship to algorithms for the Ising model when the magnetization is required

to be constant (see [50] for details).

3.11 What remains: mixing time

Creating Markov chains is easy, but showing that the chains in this section mix in
a reasonable amount of time is not. In the next chapter we introduce the idea of
bounding chains for computing the mixing time, and we present bounding chains

for each of the chains considered here.



Chapter 4

Bounding Chains

The wolf Fenris ... broke the strongest fetters as if they were made of
cobwebs. Finally ... the mountain spirits .. made for them the chain
called Gleipnir ... when the gods asked the wolf to suffer himself to be
bound with it ... he suspected their design, fearing enchantment. He
therefore only consented to be bound with it upon condition that one of
the gods put his hand in his mouth. Tyr alone has courage enough to
do this. But when the wolf found that he could not break his fetters ...
he bit off Tyr’s hand, and he has ever since remained one-handed.

-Norse Myth, Bullfinch’s Mythology

Fortunately the modern practitioner of bounding chain techniques does not need
to make quite as large a sacrifice as Tyr, but a constant factor loss of speed is
sometimes involved. In this chapter we describe the purpose and power of the

bounding chain technique.

95
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To accurately describe why bounding chains are important, we first take a look
at how Markov chains are actually simulated. Usually, random numbers are drawn
which determine a function. This function is then applied to the current state to

determine the next state of the chain.

Definition 4.1 Let f be a random function from € into itself. We say that f is
consistent with a Markov chain with transition matriz P if P(f(z) = y) = P(z,y)

for all x,y.

Recall the Dyer-Greenhill chain for the hard core gas model of the previous
chapter (Figure 3.8). Once the random node v is decided along with the uniform
random variable U, we have completely chosen the function f for that time step.
No matter what the state, knowing v and U allows to determine the next state of
the chain.

One method, then of simulating a Markov chain is for each time ¢, choose a
random function f; (independent of all other fy) and set X;.; = f;(X;). Since
each f; is independent, this clearly has the Markov property. In general, we do not
require that each f; be identically distributed; all that is needed is that they are
consistent with the Markov chain. However, in this work all of the chains which we
consider can be simulated using functions f; which are independent and identically
distributed. If Xy = z, then X; = fi 1(fi2(--- fo(z)---)). As shorthand, set
F# = fa0 for1 00 fp_y so that X; = F}.

Suppose that we choose two starting values for the chain X, and Y and set

X, = F)(Xy) and Y; = F?(Yp). Then if X; =Y, for some value of ¢, then X| =Y/
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for all ¢ > t. This motivates the following definition.

Definition 4.2 Suppose that a Markov chain is defined via a random sequence of
functions ..., f_1, fo, f1, ... consistent with a transition matrix P. We refer to such
a chain as a complete coupling chain. If Ff(X,) = F(Y,), we say that the stochastic
processes X and 'Y have coupled at time t, and denote the first time this occurs by
Te. If FY is a constant function, then we say that the chain has completely coupled

at time t, and we denote the first time this occurs by Toc.

The notion of complete coupling will be of paramount importance to us. It will
not only allow for computer experiments and analytical arguments that determine
upper bounds on the mixing time of a Markov chain, but also give perfect sampling
algorithms. The perfect sampling aspects of complete coupling will be explored
in Chapters 6 and 7. Here we concentrate on the experimental and analytical
determination of mixing times.

The following theorem is an important tool in determining the mixing time of a

Markov chain.

Theorem 4.1 Suppose that we have a completely coupling chain, Xy has some

arbitrary distribution over  and Yy has a stationary distribution w. Then
|FP(Xo) — 7llrv < P(X, #£Y;) = P(Tc > t).

That s, the total variation distance between X, and the stationary distribution s

bounded above by the probability that the X and Y processes have coupled.

This theorem was originally proved by Doeblin [10]. Aldous [1] is usually credited

with popularizing this theorem as a tool for bounding the mixing time of a Markov
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chain in the context of MCMC methods. We shall use this theorem throughout this
work, and so here we present the proof, which is straightforward.
Proof: Given that Y; has stationary distribution 7, P(Y; € A) = w(A) for all
A C Q. Also, Tc > t and T <t are disjoint sets, so
IFP(X0) —allrv = max|P(X, € A) —n(A)
= rgg#P(Xt €A Te>t)+P(Xy € ATc <t)— P(Y; € A
= rggg|P(Xt cATc>t)+P(Y,e A, Te <t)—
(PY,e ATc >t)+ P(Y, € A, Tc <1)|
= I}llg()ldP(Xt € ATe>t)— P(Y, € A, T > t)|
= rilgs}lc[max{P(Xt € A, Tc >1),P(Y, € A, Tc > t)}]
< max P(Tc > t)

= P(Tc>t).

Another way of stating this result is that the mixing time 7 (€) is bounded
above by min,{ P(T > t) < €}. Note that T is itself bounded above by T¢¢, that
is, if every process started at time 0 has coupled then clearly a pair of processes X
and Y have coupled no matter what distribution they have at time 0. Therefore we

have proved the following corollary.

Corollary 4.1 Let 7y (€) be the mizing time of the chain with respect to total

variation distance. Then if at time t, P(Tcc > t) < e,

Ty (6) < t.
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Note that this statement does not depend at all upon the stationary distribution
of the chain, it is entirely dependent upon T-¢. Therefore, if we had a method for
efficiently determining whether or not T > ¢, then we would immediately have a

procedure for estimating the mixing time of the chain.

Experimental Upper Bounds on the Mixing Time
Input: €

Fori=1to k
Sett =0
Repeat
Sett =2t+1
Compute F}
Until F} is constant
Set t; =1
Set t.s; to be the ek largest value of ¢;

Figure 4.1: Experimental Upper Bounds on the Mixing Time

Johnson [28] proposed the algorithm in Figure 4 for a specific case where it is

very easy to determine if t < T, the case of monotonicity.

4.1 Monotonicity

A partially ordered set, or poset, consists of a base set of elements () together with
a partial order < satisfying reflexivity (z < z), antisymmetry (z < y and y < x
implies = y), and transitivity (zr < y and y < z implies < z). An example of
a poset is when € is all subsets of {1,...,n} and x < y if and only if  C y. Note

that this particular subset has an element which is greater than all other elements,
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as well as one which is smaller than all other elements.

Definition 4.3 The element 1 is maximal for (Q,=<) if for all z € Q, = < 1.

Similarly, 0 is a minimal element of the poset if 0 < x for all x € Q.

In our example of the poset of all subsets of a set, 0 = ) is minimal and 1 =
{1,...,n} is maximal.
Often it is possible to place a partial order on the state space of the Markov

chain such that moves on the chain respect the partial order.

Definition 4.4 Suppose the functions ..., f_1, fo, f1,... determine a completely
coupling Markov chain. We will say that the Markov chain respects or preserves

the partial order < if for all x,y in Q and all times t,

v 2y = filz) 2 fily).

Now a simple induction argument shows that if the Markov chain respects a partial
order, that X, < Y; implies that F?(X;) < F?(Yy). Johnson’s approach [28] was
to use a maximal element, a minimal element, and a Markov chain which preserves
the partial order to “squeeze” all the elements of €2 together.

Suppose that 0 and 1 are minimal and maximal elements of 2. Then by definition
0 <2 =<1 for all z € Q. Suppose that at time ¢, F¢(0) = Fi(1). Then since for all
times t, Fi(0) < F(z) < Fi(1), we know that F2(0) = F?(z) = F2(1) for all z € Q.
In other words, Fto is constant and T < t. Moreover, we know that the smallest
time 0 and 1 meet is in fact Tre, since complete coupling cannot occur while two

processes have not coupled.



61

Example. The simplest example of a finite monotonic chain is the random walk
on {1,...,n}. Suppose that we are at state i, then with probability 1/2 the next
state is max{i — 1,1} and with probability 1/2 the next state is min{i+1,n}. Then
with the partial order ¢+ < j if ¢+ < 7, this Markov chain is monotonic. It has a
maximal element n and a minimal element 1.

Other examples of chains which admit a monotonic partial order include the
ferromagnetic Ising model and the discrete Widom-Rowlinson model on a mixture
of two types. However, a wide variety of chains do not have a simple monotonic

structure, and so a more general version of monotonicity was developed.

4.2 Antimonotonicity

Kendall [29] appears to be the earliest to take advantage of antimonotonicity in
designing an exact sampling algorithm, although Higgstrom and Nelander [18] were
the first to formally define the notion.

Recall that for most cases of interest, the sample space is just C'V. The partial
orders for these state spaces are often constructed by putting an order < on C,
and then saying that X <Y if X(v) < Y(v) for all v € V. For chains on these
spaces with this type of partial order, Haggstrom and Nelander defined the notion

of antimonotonicity as follows.

Definition 4.5 Consider a Markov chain on Q = CV, and a partial order between
configurations on any subset of V. The chain is antimonotonic if for all configura-

tions x <y and v such that fi(z)(v) # x(v), we have that fi(x)(v) > fi(y)(v).
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Note that in monotonic cases with this type of partial order, we have that v < y
implies that f;(z)(v) < fi(y)(v). That is why we refer to the property with the
inequality in the opposite direction as antimonotonicity.

This definition is usually only applicable when the number of nodes that change
color from step to step is small, such as in single node (or edge) update chains.
When a single node changes, then all we need check is that for the node v that is
altered, x < y implies that z(v) > y(v).

We keep track of two states T; (for top) and B; (for bottom). These states
will have the property that if B, < X; < T}, then By < X341 = Tyq. This
looks similar to the monotonic case, but B and 7" do not evolve according to the
Markov chain. At time ¢, let 7" = f;(T}11), and B' = f;(Byy1). For all v, set
Tiv1 = max{T'(v), B (v)} and B;;1 = min{T"(v), B'(v)}. Then we have guaranteed
that B; X X; X T, = By 2 Xy X Ty

The algorithm proceeds just as in the monotonic case. If we can find initial
states such that By < x < T, for all x € Q, then B, = T} implies that F} is constant
and we are done.

(Note that the above algorithm actually works for chains which are not anti-
monotonic, such as the Luby-Vigoda chain for the hard core gas model. Since all
of these methods are specific cases of bounding chains, we will not explore them in
detail here.)

The single site heat bath chain for the hard core model is an example of an
antimonotonic chain. Here, a single node is chosen to be changed. If the node turns

to 1, then all the neighboring nodes must have been 0. Thus to get high values
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(1) at a node, all the neighbors must have small values (0). This is the essential
notion of antimonotonicity, that the particular node value will be higher if the rest
of the configuration is smaller, where < is the measure of whether a value is higher
or smaller. Unfortunately, many chains of interest do not obey either monotonicity

nor antimonotonicity.

4.3 The bounding chain approach

The concept of bounding chains generalizes the idea of monotonicity and antimono-
tonicity, and is applicable to a vast number of chains. In its basic form, the idea
for discrete chains was independently introduced in [21] by the author and [18] by
Héggstrom and Nelander. In [23], [24], and [22], the author analyzed properties of
the bounding chain more fully, and the idea is applied to a wide variety of different
problems, including continuous Markov chains.

The original idea was developed in [21] and [18] in order to develop an exact
sampling algorithm for the proper k colorings of a graph, which is neither monotonic
nor antimonotonic when k > 3.

The concept is straightforward. Basically, instead of trying to show that com-
plete coupling has occurred for every node v of the graph, we work on showing that
the complete coupling has occurred for a specific node v. For some nodes v, com-
plete coupling will have occurred, and for some it will not. Once complete coupling
has occurred for every node v, we know that it has occurred for the entire Markov

chain.
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Given a Markov chain M; running on Q = CV with transition matrix P, we
introduce a new Markov chain M, which runs on Q, = P(C)", where P(C) denotes
the set of nonempty subsets of C'. Given that 2 is finite, this new chain will be
finite as well, and a configuration on M, consists of giving each node a set of colors
drawn from C'. In other words, each node of a configuration in the chain M, has

associated with it a color set which ranges from single colors up to the entire set C'.

Definition 4.6 Let x € 2 and y € 2. Say that x € y, or x is in y if for all nodes

v, x(v) € y(v).

In order to obtain our experimental bounds on the mixing time, we need to show
that F? is a constant. The size of  is often exponential in the input, therefore
keeping track of UzecqF} (x) is prohibitively expensive. However, keeping track of
UgeaF} (x)(v) is much easier. That is, we keep track of the total number of possible
colors of each individual node. When | Uzecq F2(z)(v)| = 1 for every node v, we
know that F?(z) is constant over = € €. The bounding chain is the tool that makes

this approach possible.

Definition 4.7 Let M, on CV and My on P(C)Y be complete coupling chains using
the random sequences ..., f_1, fo, f1,... and ..., g 1,90, g1 respectively. Then we

say that My is a bounding chain for M if for all t,

v €y = filr) € g:(y),

and

(Vo) (ly(v)] = 1) = g:(y)(v) = fe(y)(v).
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The first property of bounding chains says that after one step of the chain, if X; € Y},
then X;,; will be in Y;; if the Y process is being run on a bounding chain for the
X process.

The second property says that if the bounding chain has evolved to the point
where the color set at each point is a single color, then the chain evolves exactly as
the chain that it bounds. Therefore, the set of states where |y(v)| = 1 for all v is
absorbing for M.

A simple induction argument extends the first property from single time steps

to multiple steps.

Fact 4.1 Suppose that My is a bounding chain for M. Let X be a process run on

My andY a process on My. Then for all t > 0.
XoeYy= X, el

Note that when |y(v)| = 1 for y € s, we know that if z € y, then the value of

x must be the singleton element in y(v). This leads to the following definition.

Definition 4.8 We say that the value of node v is determined by y € Qs if |y(v)| =

L. If ly(v)| > 1, we say that the value of v is unknown.

Another way of stating the second property of bounding chains is that once all of
the nodes of the graph are determined, they stay determined. Once there are no
unknown nodes, no node will ever be unknown again.

The following theorem is the reason bounding chains are so useful.

Theorem 4.2 Suppose that My is a bounding chain for My and that Yy(v) = C for

all nodes v. Then if Y; determines v for allv € V, F2(z) is constant.
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Proof: Suppose that Yy(v) = C and that at some time ¢, |Y;(v)| = 1. Let z € Q.
Then z € Y, so FP(z) € Y; by Fact 4.1. However, only one element of (2 is in Y;
since |Y;(v)| = 1 for all nodes v. Therefore, F)(x) is that single element regardless

of z, and so must be constant. O

We claimed earlier that bounding chains generalized the notion of monotonicity
and antimonotonicity. In monotonic chains, we trapped the states between two
other states F¢(1) and F{(2). Suppose that the partial order < is derived from a
partial order < on the color set. Set Y;(v) = {c € C : FL(0)(v) < ¢ =< FY(0)(v)}.
Each node is given of a color set, and by the monotonic behavior of the chain,
X, € Y; = X, € Yy, Furthermore, for |Y;(v)| = 1 to occur for all v, F2(0) =
F?(1), meaning that Y; now evolves exactly as X; = F?(X,) does. Therefore Y; is
a bounding chain.

Antimonotonicity is similar. Again we set Y;(v) = {c € C': By(v) < ¢ < Ti(v)},
and once more it is easy to see that because of antimonotonicity this is a valid
bounding chain.

One chain which is neither monotonic nor antimonotonic is the Dyer-Greenhill
chain of the previous chapter for generating samples from the hard core gas model.
The method used by Dyer and Greenhill for proving that the mixing time of the
chain was polynomial for restricted values of A\ was path coupling [13]. Here we
develop a bounding chain for this problem. This bounding chain will not only allow
us to prove same theoretical mixing time result for the chain as in [13], but it will

also give us a means for experimentally determining the mixing time when A\ is
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outside this restricted range (and it will give an exact sampling algorithm for this

problem as we show in later chapters.)

4.3.1 Bounding the Dyer-Greenhill Hard Core chain

Recall that the state space for the Dyer-Greenhill chain is {0,1}", and so our state
space for the bounding chain will be {{0}, {1}, {0,1}}". For notational convenience,
we will use ? to denote the set {0,1}. If a node is assigned a 7, that indicates that
F? at that node might not be constant.

The Dyer-Greenhill chain 3.8 chooses a vertex v uniformly at random, then
decides whether to attempt to turn that node color to 1 or 0. If the attempt is
to turn v to 0, the colors of the neighbors of the node do not matter; v is colored
0 regardless of what the neighbors are. If the attempt is to turn v to 1 and all
neighbors are 0 then v is colored 1. If at least 2 neighbors of v are colored 1 then
v is colored 0. If exactly one neighbor of v is colored 1, another roll is made which
if successful means that v is colored 1, and this neighbor is switched from being
colored 1 to being colored 0.

Most of the bounding chains we will develop are formed from the same process.
Suppose that we wish to generate a bounding function g for a Markov chain with
function f. Then g(y)(v) = {f(z)(v)|z € y} is such a bounding function. That is,
for each possible = that could be in y, compute f(x). Then for each node v, let
the new value of y(v) be the union over all x in y of f(z)(v). Then ensures that
both bounding chain properties are true. In constructing a bounding chain, first

instantiate all the random variables that are needed to determine f. Then apply
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f to all possible z in y. Then for each node, write down all possible outcomes for
f(z) at that node.

Fortunately, for most chains of interest the value of v at the next step is entirely
determined by the values of the neighbors of v. We do not have to examine all
x € y, rather, we only have to look at all possible values for the neighbors of v that
lie in y.

For the Dyer-Greenhill chain, we will first describe in words the behavior of
the bounding chain. This is given in algorithmic form in Figure 4.2. We need to
examine all possible types of outcomes for the function f. Suppose that the random
variables comes out to be v, and U > A/(1 + A). Then f(z) says to color node v
with 0. Therefore Uy, f(2)(v) =0, and Uye, f(2)(w) = y(w) for all w # v. In this
case we change y(v) to {0} and leave all the rest of the nodes unchanged.

For all of the following cases suppose that U < A/(1 + A). If all the neighbors
w of v satisfy y(w) = {0}, the only configurations x in y also have all neighbors
of v colored 0, so z(v) always changes to 1. Therefore U,e, f(z)(v) = {1}, so
g(y)(v) = {1}. All the other nodes remain unchanged.

If at least two neighbors of v have y(v) = {1}, then so do all x in y, and again v is
always colored 0, so y(v) = {0}. The tricky cases arise when some of the neighbors
of v are colored ? = {0, 1}.

Suppose that at least two neighbors of v are colored 7 in y and the rest are
colored 0. Let x; be the configuration where all neighbors of v are colored 0, and
let x5 be the configuration such that y(v) =7 = x9(v) = 1. Then z; € y and x5 € y.

Sadly, we note that f(x1) = 1 while f(z2) = 0, so we must color y(v) with ? = {0,1}
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at the next step.

These are all the functions f where we do not attempt a swap. Suppose now
that exactly 1 neighbor w of v is colored {1}, and some other neighbor is colored ?.
Then if we do not attempt a swap (because U > A/[4(1 + A)]), we know v must be
colored 0 because of the neighbor colored {1}, so y(v) = {0} at the next step. If we
do attempt a swap, then matters turn ugly. Again let z; be the configuration where
a 7 is resolved to a 0, and x5 be the configuration where a 7 is resolved to a 1.
Then f(z1)(v) =1, f(xg)(v) =0, and f(z1)(w) = 0 and f(z3)(w) = 1. Therefore
both v and w are colored ? in the next step.

However, the swap can be helpful for some configurations. Suppose that we
attempt a swap and exactly one neighbor w of v is colored ?, while the rest are
0. Then again using x; (a 7 resolves to a 0) and z» (a 7 resolves to a 1), we see
that f(z;)(w) = f(x2)(w) = 0 and f(x1)(v) = f(x2)(v) = 1, so both v and w are

determined in the next time step.

Theorem 4.3 With probability 1, the values of all the nodes will be determined in

finite time.

Proof: There is a small but positive chance that the next n moves will be to change
each of the nodes to color 0 (where this chance is at least n!/[n™(1 + A\)"]). When
that happens, all of the nodes are determined and once they all are determined
they all stay determined. Therefore, the time needed for complete determination
is stochastically bounded by a geometric random variable, and so is finite with

probability 1. O
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Of course we would like to make a much stronger statement than that, and in
fact we can. Let A refer to largest degree in the graph (where the degree of a node

is the number of undirected edges adjacent to that node).

Theorem 4.4 Let T denote the time that all the nodes are completely determined

by the bounding chain, and so Toc < Tpe. If A < 2/[A — 2], then

2(1+ \)

E[TBC’] S 4 min {m

nlog,(2n), 2n?(1 + )\)} :

Therefore the algorithm runs in O(nlnn) steps when X is bounded away from 2/[A —
2], and O(n?\) steps in general. Moreover, Tgc is rarely very much larger than its

expected value:

P[TBC > k@E[TBc]] < e*k

The proof of this theorem when A < 2/[A — 2] will be straightforward, but when
A =2/[A — 2] (as in the case where we are attempting to sample independent sets
uniformly over graphs of bounded degree 4) will require a bit of machinery, and so

we take a brief look at martingales.

4.3.2 Martingales

Let D, denote the set of unknown nodes at a particular time step ¢, and A7 denote
the set of determined nodes (D stands for “disagree” and A stands for “agree”).
At time 0, all the nodes are colored 7, and so |Dg| = n. To prove the theorem, we
would like to be able to show that on average the size of D; is decreasing at each

step. This is the motivation behind the introduction of martingales.
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Definition 4.9 We say that a stochastic process (..., X 1, Xq, X1,...) is a super-

martingale if (with probability 1)
E[Xt+1|0'(. .. ,Xt_l, Xt)] S Xt.

In order to prove bounds on the behavior of supermartingales, we need the

concept of a stopping time.

Definition 4.10 Suppose that for all t, the event 7 <t iso(..., X, 1, X;) measur-

able. Then T is a stopping time of the process.

Roughly speaking, 7 is a stopping time if at all times ¢ we can determine if 7 has
occurred or not. An example a stopping time is the first time that the Markov chain
enters a particular state. Given the past history of the chain, we may determine
whether or not that state has already been entered.

The supermartingale property says that for single time steps the expectation of
the value of the stochastic process decreases on average. This is also true for longer

time intervals, and for stopping times [38].

Fact 4.2 Let {X;} be a supermartingale and let T be a stopping time greater than
i, then

E[X,] < EB[X)].

The following theorem is well known, we reprove it here as an illustration of a

proof technique which we will use later.

Theorem 4.5 Suppose that we have a supermartingale on {0,...,n}, and that 0
is an absorbing state. Furthermore, suppose that P(X;1 # Xi) > p. Then the

expected time until the stochastic process reaches 0 is O(n?/p).
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The proof technique works by bounding the number of times that the process

moves across the interval from 7 to 7 + 1.

Definition 4.11 We say that a stochastic process X upcrosses (a,b) at time t,
X; < a and Xyy1 > b, Let U(a,b) be the number of times (Xo, X1,...) upcrosses

(a,b). Similarly, a downcrossing occurs when X; > b and X4y < a.

Bounding the expected number of upcrossings in a general supermartingale is
normally accomplished by means of the upcrossing lemma [38]. However, for the

special case for which we need it, we can prove a stronger result directly.

Lemma 4.1 For a supermartingale on 0,1,... such that 0 is an absorbing state:
EUG,i+1)] <i+1.

Proof: Suppose that X; < i. Let 7;.; be the first time that the process moves to
a state greater than or equal to ¢ + 1. Let 7y be the first time that the that the

process hits 0. Then 7 = min{ry, 7,1} is also a stopping time, and

E[X,] > E[X,]
i > P(r=1)E[X,]+ P(r =1,)E[X,,]

i > P(r=m)-0+P(r=m41)E[X

Ti+1]

v

P(1 = Ti11)

Therefore, the probability that another upcrossing occurs is at most ¢/(i+1), making

the number of upcrossings stochastically bounded above by a geometric random
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variable with parameter 1/(i 4 1). Therefore the expected number of upcrossings is

bounded above by ¢+ + 1. O

Armed with these lemmas, we now proceed to prove Theorem 4.5.

Proof of Theorem 4.5: We bound the expected number of times ¢ > 0 that
X; = 4. This is a random variable which we will call NV;. Note that X; = ¢ for one of
three reasons. First, we could have had X;_; =7 and the state stayed the same. By
assumption the probability of staying at the same value is at most (1 —p). Second, it
might have been that X; ; < ¢ but X,y = i. This implies that there was a (i — 1, 17)
upcrossing. Finally, we could have had X;_; > 7 but X;,; = ¢, which implies that
there was a (7,7+ 1) downcrossing. Note that the number of (i,7+ 1) downcrossings
is bounded above by one more than the number of (4,7 4+ 1) upcrossings.

Taken together, we have that

E[N] < (1-p)E[N;] + E[UG — 1,9)] + (E[U(i,i +1)] + 1)

E[N] < %-[E[U(z’—1,i)]+E[U(i,z’+1)]+1]
1
< - li+i+141]
p
242
- 12

Since we know that X only takes on values from 0 to n, we have that the expected
number of steps before hitting 0 is

n

Eln] = ; E[Ni]

n 942
2

i-1 P

IN
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m+1)(n+2)—1
p Y

which is O(n?/p). O
A minor modification to the above theorem will have a noticeable impact on
our ability to prove running time bounds. The only difference is that now the

probability that we move is dependent upon the value of X;.

Theorem 4.6 Suppose that we have a supermartingale on {0,...,n} with 0 an
absorbing state. Furthermore, suppose that P(X;,1 # X;) > px,. Then the expected

time until the stochastic process reaches 0 is

2"22(”1)‘

Proof: As with the proof of Theorem 4.5, we proceed by bounding the expected
value of N;. Here, however, the probability of moving from N; at any given time

step is at least p;.

EIN] < (1=p)EN]+[UG—1,3) +U(i,i+1) +1]

1
< —(20+2
S 2it2)
Therefore E[r] = 7, 28 a5 desired. O

pi

When we have a stochastic process which is better than a supermartingale, we

use Wald’s Inequality (see [38]).

Theorem 4.7 Suppose that X = (Xg, X1,...) is a nonnegative stochastic process

such that E[X 1 — X4|X3) < —q when Xy > 1. Then if 1y is the first time that

Elr] < E[Xol/q.
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4.3.3 Running time of bounding chain for Dyer-Greenhill

We need one more well known fact from elementary probability before proving

Theorem 4.4.

Fact 4.3 Markov’s Inequality. Let X be a nonnegative random variable with posi-

tive expected value E[X]. Then

BX]

P(X >a) <
a

Proof of Theorem 4.4: For convenience, let F; be the o-algebra generated by
{Xy|t' <t}. As before, let D; be the set of unknown nodes at time ¢, and let A, =
V'\ Dy be the set of determined nodes. We will show that |D;| is a supermartingale.
The second bounding chain property guarantees that when |D;| = 0, it stays 0 and
so 0 is an absorbing state for the |D;| process.

From the algorithm, it is clear that the size of D, changes by at most two at
each step. |D;| increases in size when nodes move from A; to Dy, and decreases
when nodes move from D; to A;,1. Let V; be the random vertex chosen at time ¢

by the algorithm. Then P(v =V;) = 1/n for all v, and
1
EllDesil | 7] = [Def + Y E[[Dpi| = |Di| | Foyv = V).

From Figure 4.2 we know that at each step, our choice of v places us in one of six
disjoint cases depending on the color sets of the neighbors of v. So for v satisfying
cases 1 through 6, we compute E[|Dyy1| — |Dy| | v = Vi, Fi).

Suppose first that v € A;. Let ¢(v) denote the case that v falls into, from 1

through 6. Let C; denote the value of E[|D;i1| — |Dy| | v = V;, F] given that
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c(v) =14, and v is in A;. Then in cases 1, 2, and 3 the node always stays in A;, so
our expectation is 0 and Cy = Cy = (3 = 0. If v is in case 4, let w be the single
unknown neighbor. With probability A/(4(1 + ))), v attempts to swap with w and
so w moves to A;. With probability 3A/(4(1 + X)), v attempts to turn to color 1,

resulting in v becoming unknown. Hence

oo 3 A
PToaa+ N 41+
A
2(1+ )

In case 5, switching v leads to both v and its neighbor colored 1 to be moved to

Dy, so Cs = 2557y R Finally, in case 6, attempting to turn v to color 1 results in v

(1+A
moving to Dy, so Cg = 1%\
Now suppose that v was in D, to start. In taking a step, we do not consider at

all the color of D,. Hence we can treat such an occurrence as always moving v out

of Dy, and then treating it as though it was in A;. Hence for v € D, and case 1,
E[|Dr| = |Dillv = Vi, Bi] = C; — 1.

Let R; denote the number of nodes that fall into case 7. Altogether, we have

that

E[[Dip|l = |D| | 7] = Y =

i=1

Z CZ + Z (Cz - 1)
vEA¢,c(v)=1 VEDy,c(v)=t
6
_ |Dt 3, = (2): C,

D
_ t|+R4 Ci+ Rs - Cs + R - Cg)

D
n

IN

1
+ 5[34 + Rs + 2R max{Cy, Cs, 5 Cs}
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Now Ry, Rs and Rg cannot be arbitrarily large. Every vertex counted in R4 and Rj
is adjacent to at least one vertex in D,. Every vertex counted by Rjg is adjacent to
at least two vertices in D;. Taken as a whole, the vertices in D, are adjacent to at

most |D;|A different vertices. Hence

Ri+ Rs +2Rs < A|Dy.

We have shown that C, = C5 = Ce, and so C' = max{Cy, Cs, 206} _ %L/\ <o that
D Dy|A
E[|[Dya| | F] < Dy +_M i | ;L| c
A)\ 2(14+))) —1

= |Dt|/87

where (3 is set to be the factor in parenthesis in the last expression. There are two
ways to proceed in the analysis at this point. Since each gives an upper bound on
the expected running time, each will give us one term in the minimum expression
of the theorem. First, since § < 1, |D;| is a supermartingale, allowing us to use
Theorem 4.6 to continue. The probability that |D;.1| # |D;| is bounded below
by the probability that a node in D, is chosen and turned to 0. This occurs with
probability = [De] - Therefore, by Theorem 4.6,

ElTwe] < znjzzﬂ (1“)()

< (2n+Inn)n(l+X)
which is smaller than the second term in the minimum expression of the theorem.

When (3 < 1, we can take another approach. When we take a single step, the

expectation of |D;| decreases by a constant factor. We now show by induction on ¢



78

that

E[|Dy] < E[| Do|)5". (4.1)

The base case when ¢ = 0 is simply an identity. As our induction hypothesis,
suppose that 4.1 holds for time ¢. The fact that 0 < |D;| < n tells us that E[|D;|]

is bounded for all ¢, so at time ¢ + 1,
E(|Di11l] = B[E[|Dei|[|Dil]] < E[BIDi|] = BB"E[|Dol] = 5" E[| Dy].
Note that |Dy| is integral, so Tgc >t = |D;| > 1. Hence

P(Tge >1) = P(IDy > 1)
1

E[|Di]
B'E[|Dol]

IN

IN

< nf,

which shows that Tsc has an exponentially declining tail, allowing us to upper
bound E[Tgc]. This upper bound is exactly the first expression in the minimum
term.

The final portion of the theorem, that P[Tpc > ekE[Tgc]] < exp(—k) follows
from the facts that P(Tsc > eE[Tpc]) < 1/e, and P(Tse > t+ s) < P(Tpc >
t)P(Tpe > s). O

The same basic proof outline will be used again and again as we examine different
bounding chains. First, come up with some integer measure of how far away the
bounding chain is from detecting complete coupling (in this case, we used |Dy|).

Second, show that this measure is a supermartingale, or even better, than it shrinks
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by a constant factor at each step. Finally, use the facts we have shown about
martingales, or the fact that the measure is integral, to upper bound the time until
our measure hits zero.

Of course, not every bounding chain analysis will be quite as straightforward,
and the next chapter basically consists of simple tricks to allow bounding chains to

be used on each of the models of Chapter 2.



Bounding chain step for Dyer-Greenhill chain

Set Y =Y,
Choose a vertex v uniformly at random from V'
Choose U uniformly from [0, 1]
If U > 25
Set Y (v) = {0}
Else
Case 1: All neighbors of v are colored {0}
Set Y (v) = {1}
Case 2: v has exactly 1 neighbor w colored {1}, rest are {0}
IftU < pswapH_L)\
Set Y (v) = {1}, Y(w) = {0}
Else
Set Y (v) = {0}
Case 3: v has more than one neighbor colored {1}
Set Y (v) = {0}
Case 4: One neighbor w colored {0, 1}, rest colored 0
If U < Pswapioy
Set Y (v) = {1}, Y(w) = {0}
Else
Set Y (v) = {0,1}
Case 5: One neighbor w colored {1}, at least one colored {0, 1}
if U < Pswapioy
Set Y (v) = {0,1}, Y(w) = {0, 1}
Case 6: More than one neighbor is unknown, rest are 0
if U < 25
Set Y (v) = {0,1}

Figure 4.2: Bounding chain step for Dyer-Greenhill chain

80



Chapter 5

Bounding chains for other models

A priest asked: What is Fate, Master? And he was answered:

It is that which gives a beast of burden its reason for existence.

It is that which men in former times had to bear upon their backs.

It is that which has caused nations to build byways from City to City
upon which carts and coaches pass, and alongside which inns have come
to be built to stave off Hunger, Thirst and Weariness.

And that is Fate? said the priest.

Fate ... I thought you said Freight, responded the Master.

That’s all right, said the priest. I wanted to know what Freight was too.

-Kehlog Albran, ”The Profit”

Finding the fate of a state of the Markov chain is easy once you have a bounding
chain, because no matter what the starting state, the final fate of the process will

be the same.

81
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On the other hand, it turns out that the hard core gas model is one of the
few examples where a Markov chain can be directly turned into a bounding chain.
Often, in order for the bounding chain to detect complete coupling in a reasonable
amount of time, some tweaking of the original chain into a more suitable form is

necessary.

5.1 () coloring chain

A case in point is the chain for the ) colorings of a graph (Figure 3.10). Jerrum [25]
showed that the single site Metropolis Hastings chain for this problem is rapidly
mixing when the number of colors () > 2A, where A is the maximum degree of the
graph. Salas and Sokal [46] extended this result to the heat bath chain. In this
section we analyze a bounding chain for this chain introduced in [21] and [18]. We
will show that this bounding chain detects complete coupling in polynomial time
when @) > A(A + 1), although computer experiments in [18] indicate that it is
polynomial even when ) < 2A on certain classes of graphs.

Rather than working directly with the heat bath chain, it will be easier to work
with the acceptance rejection heat bath chain when describing the bounding chain.
Although it is not necessary to take this approach when writing and analyzing the
bounding chain, it usually does lead to some simplification.

After A + 1 different colors are chosen we know that at least one of them had
to be nonblocking. Recall that in the bounding chain at site we keep a subset of

colors, Y (v). In this case Y (v) is at worst each of the A + 1 colors that we tried
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Single site acceptance rejection heat bath () coloring chain

Set xr + X,
Choose v €, V
Repeat
Choose c € C
Until ¢ is nonblocking for v
Set x(v) + ¢
Set Xt+1 —x

Figure 5.1: Single site acceptance rejection heat bath @) coloring chain

for node v. Therefore the size of each Y (v) in the bounding chain is at most A + 1.
Hence there are at most A(A + 1) colors in the color sets of neighbors of v, so if
@ > A(A + 1) there is some chance of choosing a color which is known not to be
blocked for v.

The idea of the bounding chain is to keep selecting colors for v, adding them to
the color set, until we have chosen at least A + 1 different colors, or we have found

one not in the set. Let w ~ v denote that {v,w} is an edge of the graph. For each

Bounding chain for single site () coloring heat bath chain

Set y < Y}
Choose v €, V
Set y(v) < 0
Repeat
Choose c € C
Set y(v) < y(v) U {c}
Until ¢ € Uy, Y (w)

Figure 5.2: Bounding chain for single site () coloring heat bath chain

of v, we add to y(v) those colors which could possibly be chosen for z(v), and so
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Xy €Y, = Xy € Vit
As long as @ > A(A + 1), we always have a chance of |Y(v)| = 1 in the next
round. It turns out that this condition is sufficient for the bounding chain to detect

complete coupling in polynomial time.

Theorem 5.1 Let Tgc be the first time that the bounding chain detects complete

coupling. If Q@ > A(A + 1),

@nlnn
BlThel < Q-—AA+1)
IfQ=AA+1),
E[Tpc] < 3n°Q.

Proof: As with the Dyer-Greenhill bounding chain, we will prove the result by
keeping track of the size of Dy, the set of nodes such that |Y;(v)| > 1. Let d(v)
denote the number of neighbors of v which lie in D;. The set of nodes where
|Yi(v)| = 1 we denote A;. Let v: Ay — D,y denote the event where v moves from
Ay at time ¢t to Dy in the next time step. Such a move makes D;,; 1 larger than
D;.

On the other hand, when v : D; — A1, this decreases D; 1 by 1 compared to
D;. Each node is selected to be altered with probability 1/n.

1
E[[Deai| = [Dif [[Def) = > —~P(v: Ay = Dy [ [Di)

vEAL

1
+ 3 ~(=DP(v: Dy = Ay | |Di])

vE D¢

1
= Z —P(U . At — Dt+1 | |Dt|)

vEAL
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+Z ~1+ P(v: Dy — Dy | |Dy])

veDt

D
— |”+ vaeaﬂuap

n

The probability that v is in D;,; depends on the number of unknown neighbors of
v, which we shall denote d(v). Suppose that each of these d(v) neighbors has A + 1
colors in its color set. Then we are uncertain about the status of at most d(v)(A+1)
colors. That is, for these colors we are not sure whether or not they block v, and

so choosing them for v leads to v entering D;,;. This occurs with probability

dw)(A +1)

P(U S Dt+1) = Q

Combining this with the fact that each node in D; has at most A neighbors, and

so Y., d(v) < |Dy|A yields

El|Dia| = [Dif [ D] =

l—|Dt|+Z

l{&Hjamg+n]

A+1)]

SI= 3=

which is at most 0 when @ > A(A + 1), making |D;| a supermartingale. When

@ > A(A + 1), an easy induction gives us

Q—A@+Dy.

E[|Di|]] <n (1 - on

After k% steps, this makes E[|D;|]] < e7*. Given that |D;| is a nonnega-

tive integer, Markov’s inequality gives P(]D;] > 0) < e *, which means that the

expected time needed for |D;| to hit 0 is as in the first part of the theorem.
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For the second half, note that |D;| # |D;y1| with probability at least |D;|/(Qn),
which is a lower bound on the chance of picking an unknown node and changing it
to known. Therefore we may apply Theorem 4.6 which gives us the second half of

the theorem. O

As with the bounding chain case, it is unlikely that complete coupling takes

much longer than the expected time to completely couple. More formally,

Theorem 5.2 Let Tpe be the time that |Yy(v)| = 1 for all v, given that Yy(v) = C

for allv. Let E[Tgc]| be its expected value. Then P(Tpc > 2kE[Tc]) < 27F.

Proof: By Markov’s inequality the probability that Tpc > 2E[Tgc]| is at most 1/2.
The starting condition we are given, Yy(v) = C, is in some sense the worse possible.
If Yj(v) C Yy(v) for all v, then |Y;(v) = 1| — |Y;(v)| = 1.

Therefore after 2E[Tp¢| steps, either we have complete coupling or we try again.
Since the next steps are independent of the last, the next 2E[Tzc] steps also have
a 1/2 chance of showing complete coupling. After 2kE[Tc]| steps, the only way
we could not have complete coupling is if all k sets of 2E[Tg¢]| steps failed, which

happens with probability at most 1/2F.

This chain exhibits the cutoff phenomenon which was seen in the bounding chain
for the Dyer Greenhill hard core chain. When the number of steps is less than nlnn
there is a good chance that we have not even selected all of the nodes at least once.
Therefore the bounding chain could not have converged in this time. However,
when the number of colors is sufficiently high, the bounding chain always detects

complete coupling after O(nInn) steps, with an exponentially declining probability
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of failure. This behavior will be seen in the Potts model bounding chain as well.

5.2 The Potts model

As with the ) coloring chain, we begin by writing the heat bath chain for the Potts

model as an acceptance rejection chain. For convenience, in this section we consider

the ferromagnetic model. Similar results may be shown for the antiferromagnetic
model.

We continue using b;(v) to denote the number of neighbors of v which have color

i. After choosing which v to change, let w(i) = a’(*) be the weight associated with

A

color i, where « is again exp(1/T). A natural upper bound on the weights is a~.

With this notation, the general acceptance rejection chain becomes:

Single site acceptance rejection heat bath Potts chain

Set z + X,
Choose v € V
Repeat
Choose c € C
Choose W €y [0, 1]
Until W < @<
Set z(v) + ¢
Set X;, <=

Figure 5.3: Single site acceptance rejection heat bath Potts chain

Here blocking colors do not prevent v from becoming a particular color, they
encourage it.

Now consider how to develop a bounding chain for this process. For each node
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v and color i, let d;(v) be the number of neighbors w of v for which |Y (w)| > 2 and
i € Y(w). Let b;(v) denote the number of neighbors w of v for which |Y(w)| =1
and Y (w) = {i}. Then the chance of choosing color i for v may be as high as
abi®+di) /oA or as low as a¥()/a® for any X € Y. Therefore if we fall below
a’®) /o we always know to terminate the loop, but if we are in between this high
and low value, we must add this color to the set of possible colors and repeat the

loop again.

Single site acceptance rejection heat bath Potts bounding chain

Set y «+ Y,

Choose v €y V

Set y(v) « 0

Repeat
Choose c €, C
Choose W €y [0, 1]
W < abc(v;zdc(v)

Set y(v) < y(v) U {c}

Until W < 22

Set x(v) = ¢

Set Xt+1 =X

Figure 5.4: Single site acceptance rejection heat bath Potts bounding chain

Again this bounding chain exhibits the same kind of cutoff phenomenon as seen
earlier, where we do not have a good bound until all the nodes have been hit
with nonnegligible probability, and then the probability that we have not detected

complete coupling declines exponentially.
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Theorem 5.3 Using this bounding chain for the ferromagnetic Potts model,

knlnn
P|T T ) <ek
O

Proof: Repeating the proof for the @) coloring chain, we are led to

1
El|Dei] = [Dil [1De] = — (=D > P(ve€ D).
veV
A necessary condition for node v to end up in Dy, is that the first color for which

be (v)+de(v) . be (v) . e . .
W < &—x— also satisfies W > v (This condition is not sufficient since we

may eventually end up choosing this first unknown color as the only color picked,
an event which will come into play later when we consider the Ising model.)

Using the worst possible upper bound that d;(v) = d(v) for all i (meaning that
Y (w) = C for all neighbors of v in D;) we have that the probability that v ends up

unknown is

abe(v)+de(v) albe®)
P(U S Dt+1) < be (@) +de(v) o abe(v)+de (v)
- 1 1
T (v
< 1 —1
= ad®@)

Therefore

1 1
E[|Dep1 = |Dif | D] < ﬁ[_|Dt| + > 1=

e
v:d(v)>0 )
The interesting thing about the terms in the last summand is that they do not con-

tain any information about the node v other than d(v). Therefore we just consider
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maximizing this sum subject to the constraint that the d(v) are positive integers
that sum to at most |D;|A.
Given this freedom, the maximum will occur when all of the d(v) = 1. Suppose

d(v) > 2. This contributes

i)
to the sum. However, if we create a dummy node v" with d(v') = 1 and lower d(v)
by 1, then the sum of d(w) over all w remains the same, but now the contribution
to the sum is

1 1 a — ) 4 i)t

1 - dw) 1 +1- o 1 - d@)

To see that the numerator of this fraction is at most 1 (which would mean this
contributes more to the sum than when d(v) > 2) we note that at & = 1 the

numerator equals 1. Taking its derivative with respect to « gives

1-— d(’U)Ozal(v)_1 + (d(v) — 1)ad(v)—2 < 1- ad(v)—l

< 0

Making the derivative negative for all & > 1. Therefore by the mean value theo-
rem the numerator is less than 1 for all positive «, making this contribution more
significant.

Hence

BIDwal ~ 1D 11D < % [-IDi]+1Dda0 - )]
] [(A—l) —1] .

n (0%
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This will be negative when o« <1+ 1/(A — 1), in which case an induction may be

used to show that

“imi<n(1- 25,

and the proof is finished in the same manner as before. O

5.3 Swendsen-Wang

Swendsen-Wang is unusual in that it switches back and forth between 2 colorings
on the edges of the graph and () colorings on the nodes of the graph. Our bounding
chain must be equally quixotic, coloring the edges either {0}, {1}, or 7 = {0, 1} and
coloring the nodes in a similar fashion.

The Swendsen-Wang bounding chain is given in Figure 3.11, where C, is the
set of connected components with respect to the edges in A, w ~ v if w and v are
connected via edges in AU B, and v¢ is the component in C4 that contains vertex
v. Swendsen-Wang has two phases and so our bounding chain does as well. It is the
first phase that makes the bounding chain approach possible. Here edges are thrown
out of the chain independently with probability 1 —p (recall that p = 1 —exp(—1/T)
is another means of measuring the temperature of the Potts model). This means
that if an edge is colored {1} or ? and is thrown out, then its color will always
change to {0}. When computing components, however, edges that are still colored
? could mean that we do not know which nodes belong to which components. Hence
the colors of these nodes at the next stage of the algorithm will be uncertain.

Analyzing the change in unknown edges is easy during the removal stage. It
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Swendsen-Wang bounding chain

Set y < Y}
Let A« {{v,w} € E:y(v) =y(w), ly(v)| = [y(w)| = 1}
Let B « {{v,w} € E: [y(v) Ny(w)| > 1, [y(v)] + [y(w)| > 2}
For each edge e set U(e) €y [0, 1]
For each node v set k(v) €y {1,...,k}
For each edge e € A
IfU()<1—p
Set A« A\ {e}
Set B <+ B\ {e}
For all C € Cy
Set z(w) < k(C,) for all w € C
Choose a total order uniformly at random for C' € C4
For all v
Set y(v) < Uy <we w~wz (W)
Set Vi, <y

Figure 5.5: Swendsen-Wang bounding chain

is the growth of unknown components that makes proving the following theorem

difficult.

Theorem 5.4 Set

Q-1 pA
2Q 1-p(A—1)

B=1-(1-p">+

If B < 1, the Swendsen-Wang bounding chain will have detected complete coupling

by time —logg 2n with probability at least 1 /2.

Proof: As before, we shall show that |D;| is a supermartingale. We use A and B
as defined in the bounding chain step at time t.
The key point is that for a vertex to receive more than one color, it must be

connected to another vertex using edges in B, and at least one edge in B\ A. But
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for an edge to be in B\ A, it had to have been adjacent to a node in D,;. Hence nodes
in D;y; must be connected through edges in B to a node in D;. This is necessary
but not sufficient; a node v may be connected to a node in D, and still end up not
being placed in D, depending on the color choices. Three possibilities that would
preclude v adding w to Dy, are: w is already in Dy, because of another node, the
color chosen for v and w is the same, and we > ve, so w does not add the color
of v to its edge set. Although we cannot analyze the first exclusion, it is easy to
quantify the last two.

We shall write w ~ v if nodes v and w are connected using edges in B. Every
node placed in Dy is either in D; to start with or connected to some node in D,

using edges in B. Therefore we have that

|Dt+1| S Z [1U6Dt+1 + Z 1k(wc)¢k(vc)1wc<vc] .

vED} w~v

The ordering of components is uniform over all possible orderings, which gives us
P(we < ve) < 1/2. The probability that the components which v and w lie in

receive different colors is (@ — 1)/Q. By linearity of expectations

E|D'||F]< > [P(v €Dyt | F)+ > QQ—;] .
vED: w~Y

A necessary condition for v to be in D, is that at least one edge adjacent to v
must have survived the edge removal phase. This occurs with probability 1—(1—p)2.
We bound the number of w ~ v by using a branching process argument (see [9]).

After edge removal, the number of nodes adjacent to w is bounded above stochas-

tically by a binomial random variable with parameters p and A. Each of these is

a separate branching process, with number of children distributed as a binomial
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random variable with parameters p and A — 1. (The possible number of children is
A — 1 rather than A because one edge must be used as the parent). Let h denote
the expected size of each of these child processes.

Each one of these children processes has (A — 1)p expected number of children,

and so the expected size of each child branching process satisfies the recursion:
E[h] <14 (A —1)pE[h].

Solving, we find that E[h] < 1/[1 — p(A — 1)].

The original node v has at most (in expected value after Phase I) pA neighbors
connected by unknown edges. Each of these neighbors is also the source of a branch-
ing process, and so altogether the expected number of w ~ v is p/[1 — p(A —1).
Summing up, we find that

E[[Dy]] < ZD B = |Dy|B
vED,

where
Q-1 pA
20 1—p(A-1)|

What we have shown is that E[|Dy1| | F] < B|Dy|. Again this yields via

B=1-(1-p)*+

induction E[|Dy||Do] < B'Dg|. Dy is just the entire set of vertices V, and so
E[|Dy|] < f'n. Hence after —logs2n time steps, E[|D;]] < 1/2. Since |Dy] is
integral, we have that P(|Dy] = 0) > 1/2 by Markov’s inequality, and we are

done.O

Like all of our theorems concerning the a prior: running time of bounding chains,

this one has an immediately corollary that the chain is rapidly mixing when the
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condition on p is satisfied. This is similar to a result proved independently by
Cooper and Frieze [8] using the technique of path coupling. The following table

shows the largest value of p over which these results apply.

Table 5.1: Swendsen-Wang approach comparison

A 2 3 4 Y 6 7

Cooper/Frieze 0.416 0.209 0.136 0.100 0.079 0.065

Bounding chain: @ =2 | 0.410 0.260 0.188 0.148 0.121 0.103

Bounding chain: Any @ | 0.318 0.202 0.147 0.116 0.095 0.081

Of course, this is at best a theoretical determination. The bounding chain
approach allows for computer experimentation to determine what the actual running

time is for values of p which are much larger.

5.4 Sink free orientations

In the sink free orientation chain (Figure 3.12), we choose an edge at random and
choose a new orientation at random from the set of the orientations that do not
create a sink.

First, note that without loss of generality we may assume that every node has
degree at least 2, since a leaf of the graph must have its edge directed out of the
leaf in order to avoid creating a sink.

Suppose we were to begin the bounding chain by labeling every edge ? = {—1,1}

indicating that we do not know the orientation on any edge. Then we would never
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be able to gain any information about the state of the chain, since we would never
know whether flipping a particular edge was a permissible move.

Therefore we let Y = Y UY? meaning that Y (e) = Y (e) UY?(e) for all edges
e. At the start of the bounding chain procedure, we single out a particular edge e of
the chain. We set Y'(e) = {1}, Y?(e) = {—1} and Y'(e) = Y?(e) =7 for all €’ # e.
Clearly this means that X, € Yy = Y U Y for all X € (, since for all edges €/,
Yole') =7.

If we guarantee that X; € Y} = X,y € Y/, for i = 1,2 for all ¢, then we will
have guaranteed that X; € Y, = X, € Y, for all ¢, and we will have a bounding
chain.

We know the direction of some positive number of edges in Y;; therefore it is
possible to learn the identity of others. As always, we say that an edge e is known
if |Y(e)| = 1, and otherwise it is unknown. An edge is directed into i if the edge
(1,7) is colored —1 or if the edge (j,1) is colored 1, and otherwise it is directed out
of 7. Using this terminology, the bounding chain may be written as follows.

Now, Bubley and Dyer [6] showed that the sink free orientation chain couples in
expected O(m?) time. So if X! and X? are two arbitrary processes different at time
0, then P[X} = X?] > 1/2 for t > 2m3. The actual algorithm has two phases. In
Phase I we completely couple using the two processes Y and Y2, hoping that each
of them detects complete coupling in their half of the states. In Phase II we run
the chain as Bubley and Dyer did, hoping that the two states which remain merge

into a single state.

Theorem 5.5 For this two phase approach, E[Tgc] is O(m?).
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Single edge heat bath sink free orientation bounding chain

Set y* « Y[

Choose [e = {i,j}| €y E, where i < j

Case 1: All edges besides e are known to be directed into ¢
Set y(e) «+ {1}

Case 2: All edges besides e are known to be directed into j
Set y(e) « {1}

In the remaining cases, choose U € [0, 1]

Case 3: U < 1/2 and no edges (besides e) known to leave i
Set y(e) «+ {1,—1}

Case 4: U > 1/2 and no edges (besides ) known to leave j
Set y(e) «+ {1,—1}

Case 5: U < 1/2 and an edge known to leave i
Set y(e) « {1}

Case 6: U > 1/2 and an edge known to leave j
Set y(e) «+ {1}

Figure 5.6: Single edge heat bath sink free orientation bounding chain

Proof: The probability that a single Phase I/Phase II pass detects complete cou-
pling is the probability that three events occur. Let ¢; be the time at the end of
Phase I, and ¢ be the time at the end of Phase II. Two of the three events that
must occur are |[Y*(v)| =1 for all v and k = 1,2. Let X' and X? be the states
defined by Y'! and Y2 should this occur. Then the third event that must happen is
that th‘z = Xt22, that is, the two remaining states have coupled by the end of Phase
II.

The probability that the two states couple in Phase II was already shown [6] to
be at least 1/2 when the time the chain is run is O(m?). Therefore here we bound

the time needed for Phase I to run to completion.
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As always, we will show that |D;| is a supermartingale.

1
E[Dea| =Dl [ D) < — |3 Ple: A= Duya [ |Di])

ec At

— Z P(e:Dt—>At+1 | |Dt|)

e€ Dy

Consider how an edge might move from A; to D;,1. Suppose that e = {i, j}, with
t < j. Then we know the value of the edge already, so if the roll of U is such that
e does not change direction, we will still know it. Therefore the probability of an
edge becoming unknown is at most 1/2.

An edge cannot become unknown unless it is adjacent to an unknown edge.
Moreover, it cannot become unknown if it is pointed towards that unknown edge.
For example, suppose e is currently colored —1, and so is oriented (j,7). Then if
another edge adjacent to i is unknown then that unknown edge cannot make (7, 1)
unknown, since either we continue with e colored —1, or we reverse the direction
to (4, 7), which does not create a conflict at ¢ no matter what the direction of the
unknown edge is.

If however, we have an unknown edge adjacent to j, then switching edge e to
(1, 7) might create a sink, or it might not, so edge e would become unknown.

Suppose that we have an unknown edge adjacent to ;. How many other edges
adjacent to ¢ can it possibly help to become unknown? We have seen that the only
edges it can make unknown are those which are directed (i, j) for some j. Suppose
that there are at least 2 such edges. We only selected one edge at a time to change,
so changing 1 such edge to (j',7) would leave at least one edge still directed (i, j),

so the value of the unknown edge is utterly irrelevant.
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Therefore the unknown edge can at most make one edge adjacent to ¢ unknown.
Suppose that the unknown edge is {i, k} and the edge which it might make unknown
is (4,7). Then if {4, k} is chosen and the direction chosen is (k, i) we know that this
move would not create a sink because we have an edge leaving ¢, namely, (i, 7).

Each edge has an equal chance of being chosen, therefore

. 1 . .
P((’L,]) . At — Dt+1 | |Dt|) = % = P({Z,k} . Dt — At+1 as (k,l) | |Dt|)

Similarly, if this unknown edge could create an unknown edge from edge (k, ), then

1 , .
P((k,g) : At — Dt+1) = % = P({Z,k} : Dt — At+1 as (Z, k))

Summing over all known and unknown edges gives us

Z P(e . At — Dt+1 | |Dt|) S Z P(@ : Dt — At+1 | |Dt|)7

ec Ay e€Dy

thereby showing that |D;| is a supermartingale.

The difference between this process and the others that we have considered so
far is that not only is |D;| = 0 an absorbing state, so is |D;| = n. Fortunately,
due to our trick of using Y'* and Y?, we start with |D;| = n — 1 for both bounding
processes at the beginning of Phase I.

At least one edge in D; must be adjacent to an edge which is pointing away from
their common node, otherwise D, would be known. If we select this unknown edge
and direct it towards this common point, then it will become known. The point is
that the probability that |D;, 1| does not equal |Dy| is at least 1/(2m).

Theorem 4.5 deals with the case when 0 is the only absorbing state. If n is

also an absorbing state of the process, then the expected time until the state is
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absorbed at either 0 or n is bounded above by the expected time until the state hits
0, which is O(m?/[1/(2m)]) = O(m?3). Therefore after 3m? steps, the probability
that the process reaches absorption is 1/2. The probability that |D;| reached 0 is
1/m, and so the probability that the number of unknowns went to 0 for both Y
and Y2 is 1/m?. Therefore after m? expected runs of length 3m?, Phase I will have
condensed the bounding chain to the point where it only contains two processes X'

3

and X?2. Phase IT then couples these in time m?, making the total running time

O(m® +m?) = O(mP).

5.5 Hypercube slices

To bound the behavior of the hypercube slices chain, we again use two phases.
Unlike the sink free orientation bounding chain, however, this approach will allow
us to show the mixing time of the chain within a constant factor.

Consider this alternative version of the heat bath chain for hypercube slices
shown in Figure 3.22. In the earlier chain, we have a 1/2 chance of just holding
and not switching the random coordinate. This chance is taken care of by the test
Uy < 1/2. If we do decide to switch, the chance that we switch a node colored 1 to
0 is |C1]/n, and the chance that we switch a node colored 0 to 1 is |Cy|/n. The test
for Uy determines which event actually occurs.

The reason for writing the Markov chain in this form is that now the value of
|C| is itself a Markov chain. It either goes up 1 with probability (n — |Cy|)/n, or

down 1 with probability |C|/n.
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Alternative heat bath hypercube slice chain

Set xr + X,
Choose U; €7
Choose U; €7
Set Cy <+ {i:z
Set Cp < {i:z
If U, < ]_/2
Choose i € C
Set z(i) =0
Else Choose i €5 ()
Set z(i) =1
Set Xt+1 —x

Figure 5.7: Alternative heat bath hypercube slice chain

In Phase I all we keep track of is the value of |C;|. We know that at the beginning
L <|Cy] < U. We run the chain in such a fashion so that if |C}(z)| < |Ci(y)|, then
|IC1(f(2))| < |Ci(f(y))|, that is, the stochastic process |Cy(X;)| is monotonic.

If we have monotonicity, start a hypothetical process with |Ci(z)| = L and
another with |C}(y)| = U, and at some future time ¢, |Cy(F¢(x))| = |C1(Fi(y))],
then we know that |Cy(F{(z))| = |Ci(F{(x))| for all z € Q. The statistic |C] will
be the same for all processes. In Phase I, let Cy, be |Cy(F¢(z))| where |Cy(z)| = L,
and Cy be |C1(Fl(y))| where |Ci(y)| = U. Phase I ends when the |C}| values for
the X and Y processes merge.

How do we guarantee monotonicity? If U; < 1/2 then we have all the processes
with |C}] odd move, and all the processes with |C| even hold. If U; > 1/2, we have
all the processes with |C] hold, and all the even ones move. Since |C}| changes

by at most one at each step, if |C(z)| < |Ci(y)| then either |C(y)| — |Ci(x)]| is
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even, in which case their difference is at least two. FEach term changes by at most
one, so their difference changes by at most two and |Ci(f(z))| < |Ci(f(y))|. If
their difference is odd then at each step at most one of the values changes, so their
difference changes by at most 1 and again we have that |C(f(z))| < |Ci1(f())]-

If |Ci(z)| = |Ci(y)| then |Ci(f(x))| = |Ci(f(y))], so altogether we have that

|C1| is monotonic. Once Phase I is over we need only deal with states that contain

Heat bath hypercube slice bounding chain Phase I
Input: Cp,Cy

Set y «+ Y,
Choose U, €y [0,1]
Choose U, €y [0, 1]
Choose Us; € [0, 1]
If (U <1/2 and Cf, is odd) or (U > 1/2 and C}, is even)
Set Cf, + max{Cy —1,L}
Else Set Cp < min{Cp +1,U}
If (U <1/2 and Cy is odd) or (U > 1/2 and Cy is even)
Set Cy + rnax{C’L -1, L}
Else Set Cy < min{Cy + 1,U}

Figure 5.8: Heat bath hypercube slice bounding chain Phase I

the same number of coordinates colored 1.

In the alternative heat bath chain, suppose that we decided to change a node
colored 1 to color 0. Some of the nodes are known to be colored 1 in the bounding
chain, that is, Y(v) = {1}, so we roll another die to see if we are choosing from

these nodes, or not. If we are not, then we choose a node to switch via a two step
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process. First, pick a node ¢ from the unknown nodes. For a particular process X
lying in the bounding chain, if X (v) = 1, we switch X (v) to 0. If X(v) = 0, then
we pick another node from the unknown nodes where X (v) = 1, and switch that.
So this is a form of acceptance rejection sampling, where after the first rejection we
give up and just choose from the points meeting our criteria.

So we pick a node, and if it doesn’t meet our criteria of being colored 1, we
reject it and pick a node that is colored 1 for sure. Here’s the rub: the first node
that we choose will always be colored 0 at the end of the step. If it was colored 1 at
the beginning of the step then we switch it to 0. If it was colored 0 then we pick a
different node altogether and switch the value of that other node. In other words,
at the end of the step in the bounding chain, we know that Y (v) = 0.

As in all of the other bounding chains we have considered, let D, denote the set
of nodes such that |Y(v)| > 1. Let K; be those nodes that are known to be colored
1 (Y(v) = {1}), and K, be those nodes that are known to be colored 0.

This bounding chain will always detect complete coupling very quickly.

Theorem 5.6 After 2n1n[2n/e| time steps, the probability that this bounding chain

will have detected complete coupling is at least 1 — e.

Proof: Phase I ends when |Cy| is the same for F{(z) for all z in the state space.
Phase II ends when F{(z) is a constant. We will show that the probability that
Phase I has not ended by time nIn[2(U — L)/¢] is at most €/2 and the probability
that Phase II has not ended by time n1n[2n/¢] is also at most €/2. The union bound

for failure will then complete the proof.
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Heat bath hypercube slice bounding chain Phase II
Input: Yy, |Ch|

Set y < Y}
Choose U, €y [0, 1]
Choose U, €y [0, 1]
Choose U; € [0, 1]
IfU < 1/2
IfU < |Cl|/7’L and |Cl| > L
If Us < |K4|/|C|
Choose 1 €y K;
Set y(v) < {0}
Else
Choose i € D,
Set y(v) < {0}
Else if U > |Cy|/n and |Cy| < U
If Us < |Kol|/|Ch|
Choose i € K|
Set y(v) « {1}
Else
Choose 1 €y D,
Set y(v) < {1}
Set Y41 <y

Figure 5.9: Heat bath hypercube slice bounding chain

We begin with Phase I. Let C} and C}, denote the values of C7, and Cy after
one time step, and let a denote the change in the difference between the upper and

lower bounds, so that

a=(Cy—C1)— (Cy —Cp).

Since |C;, — Cy| <1 and |C] — O] <1, we know that a is either 0,41, or £2.
Consider two cases, in the first case, C} and C}, have the same parity. Then

with probability 1/2 they don’t move at all, and with probability 1/2 they move
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with according to the value of U,. If Uy < |CL|/n, either a = 0 or a = —1 (where
this latter event occurs when |Cp| = L. If |CL|/n < Uy < |Cyl|/n, then a = —2,

and if |Cy|/n < Us, then a = 0 or a = —1 (with the second event occurring when

|Cy| = U). Therefore,

Ela|same parity] < 50 + 3

Gv=C
n

11 [_QCU - CL]

n

Now suppose that Cy and Cp, have different parity. Then with probability 1/2
C'r, moves. With probability (n — Cr)/n, a will be —1. With probability at most
Cp/n a will be 1 (this is an upper bound on the probability since C, could be L).
The other possibility is that Cy; moves, again with probability 1/2. In this case a
is —1 with probability Cyy/n and 1 with probability at most (n — Cy)/n.

Adding everything up, we get that

2

1 -C, C 1
Ela|different parity] < = _n Ly _L}

2 n n

Oy -(y

n

C - C
U+n U

n n

And so it does not matter whether or not we started with C, and Cy having the
same parity or not, the bound on Fla] is the same.

Another way of writing this bound is
1
E[C - C1ICy — 1) < (1= =) (Cu = Cu).

Following our usual program, we note that this implies that the expected value of

k

the difference after nk time steps is at most (U — L)e™*. By Markov’s inequality
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and the fact that Cy — C', is integer, this is also an upper bound on the probability
that Cy # Cp. Therefore, after nIn[(U — L)/e| steps, the probability that Phase I
has not ended is at most e.

Now we tackle Phase II. Let D; be the number of unknown steps at time t. We
first note that D; is more than a supermartingale—it never goes up! Whenever a site
that is unknown is hit, that site permanently changes to known. The probability of
hitting a site in D, is just |D;|/n, and this changes the number of unknowns by 1,
SO

1
EllDuil | 7] < 1D (1- )

so once more we have that E[|D,.|] < ne™* and running for nInn/e steps, Phase II

will have ended with probability at least 1 — e.

5.6 Widom-Rowlinson

As pointed out in Chapter 3, there are several different chains for this model. The
birth death swapping chain will have the strongest theoretical characteristics. How-
ever, one of the other chains might be the faster depending on the implementation,

and so we consider bounding chains for all of the chains given in Chapter 3.

5.6.1 Nonlocal conditioning chain

First we consider the nonlocal chain. For this chain, we chose a color at random, then

rolled a uniform random variable for each node where that color was not blocked.
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An acceptance rejection approach to this problem would be to roll a uniform for
every node. Then if a node rolls to accept the color and is blocked, leave the node
uncolored.

This idea leads naturally to a bounding chain approach where a node which
might be blocked by an unknown node itself becomes unknown. Let N(v) denote

the node v together with all the neighbors of v.

Nonlocal bounding chain for Widom-Rowlinson

Set y < Y,
Choose i €7 {1,...,Q}
Let D ={v:|Y(v)] > 1}
For all nodes v
Set y(v) < y(v) \ {i}
For all nodes v
Choose U, €y [0,1]
IfU, < N/(1+N)
Case 1: All nodes in N(v) are colored {0}
Set y(v) « {i}
Case 2: there exists w € N(v) N D; such that w # {0,4}
Set y(v) < y(v) U {i}

Figure 5.10: Nonlocal conditioning chain for Widom-Rowlinson

Theorem 5.7 Let \; = \;/(1 + \;), and
f=(A+1) [Zj\] — min \.

If 6 < 1, then the bounding chain will have detected complete coupling in the nonlocal

Widom-Rowlinson chain after —2Q In(2nQ)/(1 — ) steps with probability at least

1/2.
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If Q = 2, then we have a tighter bound for [3,
1 1 /==
B=(A+1) {5 4 5\/A1A2} .

Proof: Let D! denote the set of vertices v in D; such that i € y(v). Then we
proceed by looking at E[|Dj | | F]. The first thing to note is that if color i is
chosen, all of D! is thrown out when ¢ is removed from y(v) for all v.

Therefore all of D! is constructed in the second step. For a node to be added
to D!, it must be adjacent to or on top of a node in D! for some j #i. Let d’(v)

denote the number of neighbors of v which are in DJ.

E|Di, | 7] = 4= |DZ|+QZPveDzﬂ|f>
veV
A
= |DZ|+Q1§§1“" N F1
i
— |Dz|+Q§g‘;l‘” i1
e,
= T|Dt|+é§[A+l]|Dg|)‘u

where \; = \;/(1+ ;). Let z be the @ dimensional vector [|z1]]2a|. .. |2g|]T at time

step . What we have shown is that

Elzi] = E[Elz41|F]] < AE[z],
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with A being a ) by () matrix:

0 %o N ... o
A 0 Ay ..o
A+ 1] 1 3 Q —i—(l—i)I
Q : Q
M A A3 ... 0

An inductive argument shows that E[z;] = A'E[z]. It is well known from linear
algebra [20] that ||A'z|| < a||x||, where « is an upper bound on the magnitude of
the eigenvalues of A. In our case, ||E[z]|| < ; \in, and so ||E[z]|| < a'n Y, Ain.

After In(2n2 Y, \;) steps, ||E[z]|] < 1/(2n), so that E[|z|] < 1/(2n) for all i.
Therefore by Markov’s inequality the probability that |z;| > 0 is at most 1/(2n).
Using the union bound, the chance that all of the |z;| are identically 0 is at most
1/2.

It remains to bound a. Of course given actual values for the );, it is a simple
matter to numerically compute the value of . When ) = 2, this may also be done
analytically, yielding o = 1/2 + 1/ 2\/ﬁ. For @ > 2, the method of Gershgorin
disks may be used to show that

a<l-— l"—imaX{Z;\i} =1- l [1 — [25\2] —mjnj\z-l ,
QR Q i iz Q ; i
which completes the proof.0

Héggstrom and Nelander [18] gave a bounding chain for the local heat bath
chain, and showed that for the specific case of the Widom-Rowlinson model where
all the )\; are equal to A, the bounding chain efficiently detects complete coupling

when QMA < 1.
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Note that for the nonlocal chain, our result gives a polynomial time guarantee
when (@ — 1)A[A 4+ 1] < 1. When @ = 2, this is almost a factor of 2 improvement
for large A. To get a bound with both the () — 1, and only a factor of A instead of
A + 1, we consider a stronger version of the bounding chain than was found in [18].

For this chain we will be able to show that it converges in polynomial time when

(Q—1IA < 1.

5.6.2 The single site heat bath chain

The base Markov chain we use is the single site heat bath chain. The acceptance
rejection single site heat bath chain for Widom-Rowlinson works as follows. Choose
a node v uniformly at random. Choose a color ¢ for that node where P(c = 0) =
1/(L+>; ) and P(e=1) = A\;/(1 + 3, A;). If color ¢ is blocked at node v, then

pick a new color, repeating until a nonblocking color is chosen for v.

Acceptance rejection single site heat bath
Widom-Rowlinson bounding chain

Set y + Y,
Choose v €5 V
Set y(v) =0
Repeat
Choose ¢ € so that P(c=0) =1/(1+Y>; \)
and P(c=1) = XN/(1+>;\) forall 1 <i <@
If for all w neighboring v, y(w) # {i}
Set y(w) < y(w) U {i}
Until ¢ = 0 or ¢ not blocked by a neighbor of v

Figure 5.11: Acceptance rejection single site heat bath Widom-Rowlinson bounding
chain
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In [18] it was noted that in bounding chains like the one above, the possibility
exists of always changing the node to a particular color regardless of the values of the
neighbors. In our case we always have a fixed probability of changing the color to
0. When this probability is greater than A/(A + 1), the bounding chain will detect
complete coupling in polynomial time. Therefore this chain was previously known
to converge when 1/(1+ >, A;) > A/[A + 1], or equivalently, when >; A; < 1/A.

Experimentally, it was noted in [18] that this bound was quite loose, especially

when () = 2. In fact, this chain has exactly the same behavior as the nonlocal chain.

Theorem 5.8 Let \; = \;/(1 +\;), and

6=A lZS\] — min ).
If 6 < 1, then the bounding chain will have detected complete coupling in the nonlocal
Widom-Rowlinson chain after 2n1n(2nQ)/(1 — ) steps with a probability that is at

least 1 / 2.

If QQ = 2, then we have a tighter bound for (3,

11—
ﬁ:A[§+§ AIAQ}.

One immediate difference is that the number of steps is larger by a factor of n,
owing to the fact that the nonlocal chain alters all n nodes simultaneously, whereas
the local chain just alters one at a time. Here just measuring running time in terms
of Markov chain steps can be misleading.

Proof: The proof is essentially the same as for the nonlocal chain. A node gets

moved into z; if it is chosen to be the changing node, 7 is chosen sometime during
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the acceptance rejection process, and it is adjacent to a node in z; for j # ¢. Let 2]
denote the unknown set for color 7 after the step is taken. Then if color 0 is chosen
in the acceptance rejection process the repeat loop stops. Therefore, the probability
of choosing 7 is at most the probability that ¢ gets chosen before 0. But this is just
the probability that ¢ is chosen conditioned on either ¢ or 0 being chosen, and is
Ai/(1+ ;). For each node v, let d;(v) denote the number of neighbors of v that lie

in z; for some j # i.

Bl ~ el | 7] = %(;_(—1>P<v¢z;|f>+¢z_P<vez;|f>)
< H[zroed1n)| )
< % ZAildi(v)>0_|Zi|]
< L )\i2|zj|A-|
N 7 J

Note that this is exactly the same equation we derived for the nonlocal chain, except

now E[z;11] < AE[z], where

0 % X ... o
AlA 0 X ... 1
i ’ ¢ +<1——>I
n| - n
Mo AL OJ

This in the same as the matrix for the nonlocal chain, except instead of a (A+1)/Q

factor in front of the first term, we have a A/n term, which is why our new running
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time is O*(n) rather than O*((Q)). Working through the eigenvalue bounds as before

gives the result in the theorem. O

By considering a stronger bounding chain, we have increased the range of \;
where have a polynomial guarantee by a factor of /(@) — 1). To further increase

the range, we introduce a bounding chain for the birth death swapping chain.

5.6.3 The birth death swapping chain

For the bounding chain for the birth death swapping chain, we may prove the

following.
Theorem 5.9 Let \; = \;/(1+\;), and
1 < .
B = §(A +1) lZ)\] — min \;.

If 6 < 1, then the bounding chain will have detected complete coupling in the nonlocal
Widom-Rowlinson chain after 2n1n(2nQ)/(1 — 3) steps with probability at least 1 /
2.

If Q = 2, then we have o tighter bound for [3,
(2 =1
8= (A+ Lymin {gmlAZ, - max )\Z-}

The discrete bounding chain is derived from the birth death swapping bounding
chain for the continuous Widom-Rowlinson model. The proof of this theorem and
description of the bounding chain is completely analogous to the continous case,

and will be postponed until Chapter 8.
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5.7 The antivoter model

As mentioned in chapter 2, the antivoter model and the voter model are closely
related with one important difference-the antivoter model has a stationary distri-
bution (given a nonbipartite graph) whereas the voter model has absorbing states
where all the nodes are colored the same way.

On the other hand, they are linked in that the mixing time for the antivoter
chain is bounded above by the absorption time for the voter model. In fact, as we
shall show, the time needed for the bounding chain to detect complete coalescence
of the antivoter chain is the same as the time until absorption for the voter chain.

To facilitate complete coalescence, we add a symmetric move that at each step
randomly permutes the color set. With probability 1/2, nodes colored 1 all flip to
color 0 and nodes colored 0 all flip to color 1. All this accomplishes is to allow us
at the first step to say exactly what the color of at least 1 node is, either 0 or 1. As
with the sink free orientations chain, we need to know the color of at least one site
at all times in order to make any progress. But once at least some of the nodes are
known, then selecting an unknown node and a known neighbor cause the unknown
node to become known.

Instead of labeling each node {0,1} or unknown, assign each node a variable
x;, where z; € {0,1}. The bounding chain proceeds by flipping the value of the
variable instead of the known value. Then the value of y(7) is a monomial, either z;
or 1 —z; for some j in V. Once all the monomials y(¢) contain but a single variable

xj, we say that we have completely coupled. All nodes colored z; will be a single
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Antivoter bounding chain

Set y < Y}
Choose v €, V
Choose U €y [0,1]
IfU <1/2

For allv eV

Set y(v) = 1—y(v)

Choose w uniformly from the neighbors of v
Set y(w) + 1 —y(v)
Set Y 1 <y

Figure 5.12: Antivoter bounding chain

color, and all nodes colored 1 — z; will be a different color.

However, note that we may run the voter model on two colors in a similar
fashion, except at each step y(w) < y(v) instead of 1 — y(v). Absorption occurs
when all the nodes are colored z;, which occurs at exactly the same time that all
the nodes for the antivoter model are either z; or 1 — z;. A more detailed analysis
can show that the original antivoter chain without the flipping of color classes is

rapidly mixing; here we just show that our modified chain rapidly mixes.

Theorem 5.10 After n>A/cpin time steps (where cpy s the size of the unweighted
minimum cut in the graph), the probability that this chain detects complete coupling

(alternatively, that the two color voter model reaches an absorption state) is at least

1—e

Proof: At each step, let j be the value such that the most nodes are colored

either z; or 1 — ;. Let A, denote this set of nodes, and let D, = V' \ A;. Define
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¢ = Yuep, deg(v). Since deg(v) is always positive, when ¢, = 0 we know that
|Dy| = 0, our standard goal.
A node w moves from A; to Dy, if a neighbor v is selected, and then w is the

random neighbor of v which is selected to be changed, an event which occurs with

probability = - d‘i;”(i), where d(v) is the number of neighbors of v which lie in D;.
This event changes the value of ¢ by deg(v). Similarly, a node w moves from D,
to A, if a neighbor v is selected followed by w being selected as the neighbor. This
changes the value of ¢ by —deg(v). The only way that ¢, # ¢, is for one of these

two events to occur.

Elp | Fi] = Tll v;xtdeg (l)+v§t —deg(v %(_v)d(v)
- ¢t—%¢t+%;d(v)
= dn—%cﬁﬁ%aﬁt
= ¢

Hence ¢, is not only a supermartingale, it is in fact a martingale as well. The sets
Ay and D; must be connected by a number of edges ¢,,;,, where ¢,,;,, is the size of
the minumum unweighted cut in the graph. Since deg(v) < A for all v, we know
that each edge {v, w} in the graph is selected with probability at least 1/(nA) So
the probability that ¢ changes value is bounded below by ¢,;,/(nA), and using

Theorem 4.5 completes the proof.
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5.8 The list update problem

The bounding chain for the list update chains are straightforward, but unfortunately
seem to take longer to detect complete coupling. Consider the direct MA1 chain,
which selects an item at random according to a distribution p, then swaps that
item with the chain directly in front of it. To create a bounding chain, we need

only to keep track of where each possible item could be. When |y(v)| = 1 for all

MA1 list update chain

Set y < Y}
Request i € {1,...,n} with the probability of choosing i is p;
If for some j, y(7) = {i}
Set y(j) < y(j — 1)
Set y(j — 1) « {i}
Else
For all 5 from n down to 2

If i € y(j)
Set y(j) < y(j) \ {j}
Set y(j) < y(j)Uy(j — 1)
Set y(j —1) < y(j — 1) U{j}

Set Y 1 <y

F
%

Figure 5.13: MAT1 list update chain

v € {1,...,n}, the bounding chain has detected complete coalescence.

The arbitrary transposition chain for the MA1 list update process has a similar
bounding chain. Our approach is brute force. Given the two positions picked, one
has a color set and the other has a color set. For each pair, we use our random
uniform U to decide the ordering, and update the color sets accordingly. Note that

taking a single step of the bounding chain may take up to n? time (within the for
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Arbitrary transposition for MA1 bounding chain

Set y < Y}
Choose w; €y {1,2,...,n}
Choose ws €y {1,2,...,n}\ {v1}
Set vy « min{wy, wy}
Set vy «— max{wy, wy}
Set y1 « y(v1)
Set yp « y(v2)
Set y(vy) « 0
Set y(vy) < 0
Choose U €y [0, 1]
For each (7,j) with i € y; and j € vy
It U < pf/(p{ +p])
Set y(v2) < y(vo) U {j}
Set y(v1) « y(v1) U {i}
Else Set y(vy) « y(vy) U {i}
Set y(v1) « y(v1) U{j}
Set Vi, <y

Figure 5.14: Arbitrary transposition for MA1 bounding chain

loop). This is in sharp contrast to many of our other chains where the time for a
single step was roughly the same as for the original Markov chain.

When the weights p; are geometric, so that p; = 6%, the higher weight items
tend to be placed at the front with very high probability. Under these conditions,
a modified version of this bounding chain where a step takes only as long as the
Markov chain step may be used. Moreover, this chain converges quickly under
certain conditions. This chain takes advantage of the fact that the high weight
items tend to collect on the left side. We let m be the smallest value such that
items 1 through m are all known. Let LEFT be the set {1,...,m} and RIGHT

be the rest of the nodes. Then instead of just wildly choosing positions, we first
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decide whether positions come from LEFT or RIGHT and proceed from there.
Note that for any permutation, choosing a random position in that permutation
is equivalent to choosing a random item. This equivalence will be very useful in

constructing a bounding chain.
Theorem 5.11 Suppose that p;1/p; < 0 < 1/5 for all i. Then
E[time until complete coupling] < 10n>.

Proof: Given that the weights decrease geometrically, we know that it is likely
that the high weight items will be at the front. Therefore, in this proof we take a
departure from keeping track of |D;|, and instead keep track of m;, where m; is the
largest value such that {1,...,m;} are in A;. Some value i > m; + 1 might also be
in A;, but we will not use that information in our analysis.

We shall show that on average the value of m, grows larger at each time step,
so that n — my is a supermartingale. Once m; = n, complete coupling has occurred
and we are done.

In case 1, both records are chosen from nodes in A;, therefore m;,; = m; since
we are only moving around known nodes.

The value of m,; can change in the other two cases. For instance, if both values
come from RIGHT, then it is conceivable that the value of m, can go up if we know
the item which gets placed in position m; + 1.

The probability that both choices come from RIGHT, that one choice has po-
sition m + 1, and the other choice is the largest record in RIGHT is at least 2/n?

(it could be 1/n if these two positions are the same). The ratio p;/p} is at least 0,
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so the probability that this largest record gets sorted with the record in position
my + 1 is at least 1/(1 + 6). Hence P(myy1 = my + 1) > 2/[n?(1 + 0)].
Unfortunately, m; may go down if we choose one position from LEFT and the
other position from RIGHT. This happens when a < m. Potentially, m;,; = a—1.
To upper bound the probability that this occurs, we first note that the probability
that position a and a particular unknown record j are both chosen is just 2/n?.
Now the closest that an unknown record can be to positon a is m + 1 — a, and so
the probability that sorting occurs is at least p}*™~*/(p}*'~* 4+ pm+1=4), Therefore

the probability of becoming unknown is at most

prite 1

pvgzﬂ a +p;n+1—a o (pé/ps)mﬂw +1°

This ratio is largest when py/p, is smallest. We know that p;/p;iq > 1/60¢ and
Pi—q/pi > 1/6%.

Let ¢ be the record at position a. For each d there are at most two records whose
label is d away from 7. Moreover, the distance between these two records and a is at
least m +1 —a. Hence the probability that position a becomes unknown is bounded

above by
(n—m)/2 0d(m+17a) " "
S gy <2000,

Combining these terms, we have that
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— 10n?

Therefore, the expected number of steps needed until m; = n is n/(1/10n?), or just

10n3 by Wald’s identity.

5.8.1 Application to nonparametric testing

This problem of sampling from the list update distribution with geometric weights
has another application quite unrelated to the list update problem. Suppose that
we have sampled 100 people about their favorite ice cream. Ranking the results
gives us a permutation. We wish to construct a test for a specific statistic of some
sort, such as how many ice cream makers in the top five positions are located in
North Dakota.

In order to determine if our test is statistically significant, we first need some
model of how the possible rankings are distributed. One common method for accom-
plishing this is to assume that given the true distribution of rankings x4, a sampled
permutation s, is randomly chosen with weight proportional to #%*1:#2) where § < 1
so that it is unlikely that our surveyed rankings will be a great distance from the
true set of rankings.

This definition begs the question, what distance do we use to measure d(u1, p2)?

One possibility is the sum of squares distance, that is

d(pn, pz) = (i) — pa(i)?,

)
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an idea known as Molloy’s Rule.
There are some obvious variations on this, such as using |u(i) — po(7)| instead
of the squares. However, we shall look further at the sum of squares distance and

see where it leads. Expanding, we have that

d(pn, po) = Zﬂl ? = 201 (i) 2 (8) + pra(i)?

- (; ) (; ) (; i)

Two facts help us out. First, assume that p; is the identity permutation, this
changes nothing if we assume that ;; has been applied to ps. Second, the first two
terms in this product are constants, and so # raised to these terms are constants as

well. Therefore the distribution 7(y) = 0%H#2) / 7 satisfies:
o~ (i 2in)
_9i\ —H2(?)
~ H(g 22) ®
~ )

where again we may insert the n in the final equation because it is simply a multi-
plicative constant. This is exactly the form of the geometrically weighted list update
problem with ratio %, and so if #* < 1/5 our previous theorem tells us that we may

exactly sample for this problem as well.
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5.9 Other applications of bounding chains

We have already seen that having a bounding chain available gives us a means
for experimental determination of the mixing time of the chain. However, the
potential of bounding chains is much greater. In the next chapter, we discuss
coupling from the past (CFTP), a means for generating perfect samples from a
distribution. Bounding chains give a way to use CFTP for a particular chain.
Moreover, upper bounds on the time needed for bounding chains to detect complete
coupling will provide an upper bound on the running time of the algorithm.
Coupling from the past has but one weakness, that the user must commit to
running the algorithm until termination in order not to introduce bias into the
sample eventually obtained. Therefore in the chapter following our discussion of
CFTP we examine another method for generating perfect samples based on the
concept of strong stationary times. Again the existence of bounding chains will be

an essential component in creating these perfect samplers.



Arbitrary transposition for M A1 bounding chain II
Set y < Y,

Set A, + {v:|y(v)| =1}

Set m « min;{y(1),...,y(i)} C A,

Set LEFT « {y(1),...,m}, RIGHT + {y(m+1),...,m}
Choose U, uniformly at random from [0, 1]

Case 1 U; < (%)2

Choose i €y LEFT, Choose j uniformly from the items in LEFT
Let a be the position of record 2

2 2
Case 2 (%) <U < (%) + 2 (%) (";m)
Choose i uniformly from the items in LEFT
Choose j uniformly from the items in RIGHT

Let a be the positions of record ¢
Case 3 (%)2 + (m) (”*m) < U

Choose U, uniformly at random from [0, 1]

If Uy < 2/(m —n)?
Set a = m + 1, Set j to be the highest probability item in RIGHT

Choose Us uniformly at random from [0, 1]

If a = m + 1 and j is the highest probability unknown record
Let j' be second highest probability among unknown records
fUs < 5y

Let y(a) = {;}

Else ifa <m
Set p, < max{p;,p;}, Set ps; < min{p;, p;}

If record j is in LEFT
If Us < 1 gy
Sort items ¢ and j
Else
Antisort items 7 and j
If record j is in RIGHT

1
WUs < o tmri—o)

Let y(a) = {(}
Else
Let y(a) =7
Set Y41 <y

Figure 5.15: Arbitrary transposition for MA1 bounding chain
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Chapter 6

Perfect sampling using coupling

from the past

It is the mark of an educated mind to rest satisfied with the degree
of precision which the nature of the subject admits and not to seek
exactness where only an approximation is possible.

-Aristotle

The traditional Monte Carlo Markov chain method yields an answer that is only
approximately distributed according to the desired distribution, and this was the
state of the art for decades. Fortunately, certain researchers never read Aristotle,
and in the last five years methods have been discovered which allow exact sampling
from the stationary distribution of a chain. Such a method is often referred to as a
perfect sampling algorithm.

Propp and Wilson [41] introduced coupling from the past (CFTP) as a simple
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algorithm for generating samples drawn exactly from the stationary distribution of
a chain. In only a few years, Monte Carlo Markov chain practitioners have expanded
the scope of CF'TP, applying the procedure to dozens of different chains.

The general idea is quite simple. We have often stated that the stochastic
processes which we consider have index set over all integers, including negative

ones. We now describe how to simulate such a chain.

6.1 Reversing the chain

Suppose that X, has distribution py. Then the distribution of X; will be p; = poP.
We wish to find a distribution p_; such that py = p_; P. If P has a unique stationary
distribution 7, then 7 P = 7, and setting X; to have distribution 7 for all ¢ (including
negative i) gives the result.

Hence we suppose that each X; is distributed according to the unique stationary
distribution of the chain. Given X, we wish to simulate X _;, X ,,.... Furthermore,
we wish to insure that P(X; = x;|X;_1 = x;_1) = P(2;_1, ;). Using the fact that
X;, X;_ 1 are stationary gives

P(Xi =x;, Xy = xz’fl)
P(Xiq = xz’fl)
P(Xio1 = 24| X5 = ;)

= P (Xi =) P(Xi 1 = 73 4)

m(z;)

7T(£UZ',1)

This relationship inspires the following definition.

P(Xi = fUz'|Xz>1 = xz’fl) =

= P(xiflaxz‘)

Definition 6.1 For a Markov chain with transition matriz P and unique stationary
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distribution m, let

~—

Ply.x) = %Pu,y)

be the reversibilization of P. If a chain is reversible, then P = P.

This is why the detailed balance condition is also known as reversibility. Given
a reversibile chain, and X started in the stationary distribution, we can run the
chain backwards according to P in order to obtain Xy, X 1, X 5, ... which are also
distributed according to 7, and ..., X_5, X_1, X will be distributed as a stochastic

process on a Markov chain.

6.2 Coupling from the past

Coupling from the past utilizes this characterization to obtain samples that are
drawn exactly from the stationary distribution. Suppose that X is stationary.
Then using our construction, X ; will also be stationary for all t. Therefore, CF'TP
starts at X_;, and runs forward up to time 0. Suppose that F, " is constant. Then
we have that X, = F; *(X_;) which is a known value. Therefore we have obtained
a perfect sample from the stationary distribution, Xj.

The only difficulty arises when F, "’ is not constant. Then we simply increase
t until F; "' is constant. As long as this eventually occurs with probability 1, this

algorithm will almost surely terminate.
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Coupling from the past

Set t =0
Repeat

Set t < 2t—1

Run chain from ¢ to (¢t +1)/2
Until |}, , is constant
Output F(Q) as our answer

Figure 6.1: Coupling from the past (CFTP)

6.2.1 CFTP and bounding chains

Propp and Wilson [41] noted that CFTP may be used anywhere F; " may be shown
to be constant, although most of their examples dealt with monotonic Markov
chains. For monotonic chains, recall that we need only keep track of Fo’t(i) and
F;7(0), and wait until they meet. It was shown in [41] that the expected time until
they meet is of the same order as the mixing time of the Markov chain.

With bounding chains, we only know that the complete coupling time gives
an upper bound for the mixing time of the chain, but the reverse may not be
true. Still, bounding chains do allow us to determine when Fj; " is constant, and so
immediately the results of the last two chapters indicate that we have algorithms for
perfect sampling from the hard core gas model using the Dyer-Greenhill chain, the
Potts model using single site update or Swendsen-Wang, the k colorings of a graph,
the sink free orientations of a graph, the antivoter model, the restricted hypercube,
and the list access problem.

The running time of CF'T'P is of the same order as the time needed for complete
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coupling to be detected by the bounding chain. Therefore our results showing that
the bounding chain detects complete coupling immediately extend to give a priori
bounds on the running time of CFTP.

The amount of work needed for CTFP comes from the memory required to store
each f_y for t < t' < 0. In practice, random seeds are used for a pseudorandom
number generator that creates the same sequence of “random” numbers each time
(given the same seed). Therefore, the memory requirements are reduced to retaining

the seed for t = —1, —2,—4, ..., which is usually on the order of Inn.

6.2.2 Coupling from the future

As Stephen Hawking pointed out, “Disorder increases with time because we mea-
sure time in the direction in which disorder increases.” In coupling from the past,
we found X, by starting at a point —t in time and then running forward. The
counterintuitive part of this process from a physical point of view is that disorder,
as measured by the number of possible states admitted by the bounding chain, is
decreasing as time moves forward. However, we could modify our algorithm to start
at a point ¢ > 0 in time and run backwards using the reversed transition matrix P.
We shall refer to this time reversed version of the algorithm as coupling from the
future (CFTF).

Practically, CF'TF is no different from CFTP. Most of the chains we consider here
are reversible, and so running the chain forwards or backwards makes no difference
whatsoever to running time or memory requirements. This notion of CFTF does

have some nice theoretical implications, however.
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The first concerns the time arrow associated with entropy (disorder). A general
notion of entropy is the logarithm of the number of states that the system could
possibly be in. With bounding chains, the entropy of a state Y; is >, In|Y;(v)].
When the entropy is 0, |Y;(v)| = 1 for all v and we have completely coupled. In
coupling from the past, the entropy decreases as time moves forward, contrary to
the usual physical use of the term.

With CFTF, the bounding chain is working on the reversed chain, and so as
the entropy decreases we are moving backwards in time, exactly as intuition would
suggest.

Second, with coupling from the future we need only define our stochastic process
on index set 0,1,.... We only need the reversibilization for moving backwards on a
finite set of indices, not for the entire set of negative integers.

Third, the method of attack in Chapter 7 will also concentrate on a process
Xo, X1,... where Xy is assumed to be stationary. This forward way of looking at
things makes clearer the connection between the two.

CFTF, like CFTP, is an example of an uninterruptible perfect sampling algo-
rithm. Once a run is started to compute X;, the user must commit to finishing
the run in order to obtain unbiased samples. In the next chapter we show how this

limitation can be removed with some extra work.



Chapter 7

Perfect sampling using strong

stationary times

Technological progress has merely provided us with more efficient means
for going backwards.

-Aldous Huzley

The reversibilization of a Markov chain, the ability to go backwards in time,
provides the cornerstone for another algorithm for generating exact samples. Unlike
CFETP, this algorithm will be interruptible, in that the user can give up, shut off
the computer, and go home at any time in the algorithm without introducing bias
into the sample.

Suppose that we have a Markov process (Xg, X1, ...) where Xj is begun in the
unique stationary distribution 7 of the chain. Then X; will also be stationary for

all times ¢. Unfortunately, the simulator must start in a specified state, so instead
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of having the situation P(X; = x) = m(x), we must deal with P(X; = 2| X, = x)
which in general will not be m(x).

We “counteract” the effect of conditioning on the value of X, using a strong
stationary stopping time. Recall that a stopping time is any random variable 7 such
that the event 7 < ¢ is 0(Xj, ..., X;) measurable. A strong stationary stopping time

is one that obviates the effects of starting in a particular state.

Definition 7.1 Say that T is a strong stationary stopping time if

P(X; =z|t <t,Xo =1x9) = 7(x).

Here we concentrate our efforts on a perfect sampling technique introduced by
Fill [14] for a class of chains which are stochastic monotonic (a relaxation of the
monotonicity property discussed earlier). In this paper Fill commented that the
method could be generalized, and Murdoch and Rosenthal [37] specified an algo-
rithm which was applicable to a broader range of chains. Here we shall refer to this
more general algorithm as FMR.

Murdoch and Rosenthal developed FMR as an algorithm. Here we show that
their idea also leads to a strong stationary stopping time. Using this idea, we develop
bounds on the running time of FMR in terms of the complete coupling time and
stationary mixing time of the chain. Rather than follow Murdoch and Rosenthal’s
development, we begin by examining how general strong stationary times may be
developed using complete coupling.

Consider again Xj, Xy, ... where each X; has distribution 7. Suppose that 7 is

any stopping time which occurs by time ¢ with positive probability and both 7 (x)
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and 7 (z) are positive. Then

P(Xy =2, Xy = xo|T < 1)
P(Xy = zo|T < 1)
P(Xo =xo|m < t, Xy = 1)
P(Xy = zo|T < 1)
P(Xo =zo|7 <t, Xy = 2)

= T PMo—mir<y "W

P(Xt:a?|T§t,X0 :ZU[)) =

P(X; =)

Our goal is to construct a 7 such that the fraction multiplying 7 (x) is equal to 1.
Recall that for a process such as X, the reversibilization P(y, z) = n(x)P(z,y) /7 (y)
allows us to simulate the chain in the reverse time direction. Therefore, one method
of generating the random vector Xy, ..., X; is to generate X; according to 7, and
then run the chain backwards using P.

Just as we use functions f; (where X; 11 = f;(X})) to take moves on the Markov
chain in the forward direction, let f, (where X, ; = f,(X,)) take moves in the
reverse direction. For a < b, let Fi* = fy 0 f, 1 0 fos1 so that X (a) = F2(X(b)).

Now suppose that F}' is a constant. Then this constant is a random variable
with a distribution that is independent of o(X;). Therefore, we let 7 be the first

time ¢ such that F} is constant. This means that
P(Xo = x| <t,X; =1t) = P(Xo = mo|7 < 1)

and

PX, =zt <t, X, =1) =n(z).

Recall that in CFTF (and CFTP) the goal was to determine the value of the

fixed random variable X;. Now we are more flexible. We are willing to accept any
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random variable X; as stationary, as long as complete coupling has occurred moving
backwards from time ¢ to time 0.

Algorithmically, this may be used to take perfect samples as follows. Start X
in an arbitrary state xy. Run the chain forward to time ¢. This generates a path
Xo, X1, X5, ..., X;. Now run the chain backwards from time ¢ to 0 conditioned on
the moves made on the path. If these backwards moves completely couple the chain,
then X; will be stationary.

The functions ft move the process backwards in time. By conditioning on the
backwards path, we mean that we choose f; conditioned on the event that f,(X;) =

X1,

FMR Perfect Sampling
Input T, X(), Xl, PN ,XT

Run the chain backwards, conditioned on the path X, ..., X,
as a complete coupling chain
If the backward chain completely couples by time 0,
Output 7 < tis true
Else
Output 7 < t is false

Figure 7.1: Complete coupling strong stationary times

Use of a strong stationary stopping time has one great advantage over CFTP
(and CFTF). It is interruptible. The user runs the chain forward until 7 < ¢. If
this takes too long, the user can abort the process without introducing any bias
into samples which might be taken later. As Fill notes [14], this is really more of

a theoretical advantage than a practical one, since when CFTP has small expected
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running time, the probability that the actual running time is larger by a factor of
k declines exponentially in k.

The amount of work can be much greater for this procedure than for CETP. We
must run the backward chain conditioned on the forward path, which may be quite
difficult to do. However, for local update algorithms this is usually quite easy, and
later we describe how this procedure may be applied to the Dyer-Greenhill chain
for the hard core gas model.

On the other hand, the amount of work can also be much smaller. We are
conditioning on the forward path started at xy. The choice of xy can make it more
likely that the chain will have completely coupled. Consider the case of single site
update for the hard core gas model. If we start xy at the state of all nodes colored 0
(the empty independent set), then in the backwards moves it is more likely to color
a node 0. We have seen in the bounding chain that when a node is colored 0 it
immediately moves from unknown to known. Therefore it is possible that starting
will all nodes colored 0 makes it more likely that the backwards bounding chain will

show complete coupling.

7.0.3 Upper bounds on the strong stationary stopping time

Recall from Chapter 1 that the separation distance to m is defined as

lp—7lls = A\7§(1114I))>0 (1 —p(A)/m(A)).

Just as the coupling theorem allows us to bound total variation mixing time in

terms of a coupling stopping time, Diaconis and Aldous [3] showed how separation
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mixing time is bounding by strong stationary stopping times.

Theorem 7.1 Suppose that a Markov chain has a strong stationary stopping time
T, then

P = 7lls < P(7 > ).

Therefore, we do not expect that our strong stationary stopping time will run
faster than the separation mixing time. Recall that 7¢(1/2) is the first time that
the separation distance starting at an arbitrary state falls below 1/2, and Tge is

the time that the bounding chain detects complete coupling.

Theorem 7.2 Let T = 2E[Tgc) + 75(1/2). Then for any positive t,
P(r > t) < (3/4)V"1.

where Elr] < 2FE[Tgc| + 75(1/2). For reversible chains, we may also set T =

6E[Tsc].

Proof: Intuitively, running the chain for 2E[T¢] steps gives the bounding chain
time to detect complete coupling in the reverse direction. Running the chain for
another T steps after that down to 0 allows the chain to almost reach the stationary
distribution, so that conditioning on the value of X1 does not change the probability
of complete coupling too much. Let BCT denote the event that the bounding chain
detects complete coupling from time 7" to time 0. Then given that we start at x,
the probability that 7 < T'is just P(BCl|Xy = z¢). Let T = 2E[Tc] + 75(1/2)
By Markov’s inequality, running the chain backwards from from time 7T to time

T—2E[Tpc| = 75(1/2) gives us at least a 1/2 chance of the bounding chain detecting
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complete coupling. The remaining time from 7" down to 0 gives us at least a 1/2
chance that X, will be stationary no matter what the value of state X (1/2). Hence,
even if we know that the bounding chain detected complete coupling from time 7T’

down to time 75(1/2), we know that X will still be close to stationary.

P(BCT, Xy =
P(BOg|X0 = ZUU) = ( 0 0 0)

P(Xo = o)
> P(BC:/TJE[TBCPXO = 7p)
- P(Xo = x0)
o P(BCTT:*2E[TBO})P(XU = 'IL‘0|BCTT:72E[TBO})
B P(X, = x0)
S 1 ' 1/27(z0)
— 2 7(=mo)
= 1/4.

Therefore P(r > T) < 1/4 and since the intervals [0,T], [T + 1,2T],... are
independent, P(7 > kT') < (3/4)%, which gives the first result.
For reversible chains, it is well known that 74(1/2) < 47 (1/2) < 2E[Tpc] 2]

which yields the final result. O.

This shows that when dealing with reversible chains, the running time of FMR
will be similar to the running time of CFTP in number of steps, with the added
bonus of only requiring a set amount of time and memory before the algorithm
begins. (Note that for the specific case of monotonic reversible chains, Fill proved

a tighter running time bound of just Ts which might be faster than Toc [14].)
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7.1 Application to local update chains

In this section, we apply this strong stationary stopping time procedure to the hard
core gas chain of Dyer and Greenhill 3.8 and the single site Widom-Rowlinson heat

bath chain, both of which are local update Markov chains.

7.1.1 The Hard Core Gas Model

Recall from Chapter 3 the Dyer-Greenhill chain for the hard core gas model. The
use of FMR requires two things: first, an efficient means for determining when
complete coupling has occurred; and second, a way of running the chain forward
conditioned on a single path outcome.

One technique for determining complete coupling is the bounding chain given
in Chapter 4 as Figure 4.2. For the remainder of this section, then, we discuss the
requirement specific to FMR, that of running the chain conditioned on the outcome
of a single particle.

Consider the path Xy, Xi,..., X7. If we needed to keep track of the entire state
of X; for every ¢ in 0,...,7T, then FMR would require vastly more memory than
CFTP. Fortunately, for local update chains this is not necessary. Just as with CF'TP,
it is enough to record the move made from X; to X;,; forall ¢tin 0,..., 7 — 1.

For the Dyer-Greenhill chain, these moves consist of three types. HOLD, where
X1 = Xy, FLIP(v), where the move consists entirely of flipping the color of node
v from 0 to 1 (or vice versa), and SWAP (v, w), where node v was colored 0, node

w was colored 1, and the chain switched their values. We deal with each of these
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moves in turn.

For HOLD, we must choose at random f; such that f;(X;) = X;. This may be
accomplished through acceptance rejection. Pick a random f; as usual. If f,(X;) =
X, then keep this move, otherwise reject it and begin again. The expected time
needed to make a move is just the inverse of the probability that a random f; fixes
X;. If v is already 0, then this is the probability that v is chosen to be 0. If v
is 1, then this is the probability that v is chosen to be 1. A lower bound on the

probability of holding is the minimum of these two chances. Hence

P(fi(Xy) = Xy) > min{H%, l—i-%}’

and the expected number of choices of f; we must make until acceptance is just
(14 A) max{1,1/A}.

For the FLIP(v) move, clearly the node chosen for f; is v. If node v moved from
0 to 1, then U is uniform over [1/(1 4+ \), 1], and if v moved from 1 to 0, then U is
uniform over [0,1/(1 4 \)].

Finally for the SWAP(v,w) move, v was again the chosen node, while U is
uniform over [0, A\/(4(1+A))]. Hence (treating A as a constant), the memory needed

is similar to CFTP where the randomness is coming from true random numbers.

7.1.2 Single site Widom-Rowlinson

The discrete Widom-Rowlinson case is similar. There are three types of moves,
HOLD, where X;;; = X;. In MOVE1(v,c,) node v is changed to color ¢, where

neighbors of v include at least one colored ¢, and MOVE2(v,c) where v is changed
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to color ¢, but all of the neighbors of v has color 0. Again the HOLD move may
be accomplished using acceptance/rejection sampling. The expected time needed
will be at most (1 + A) max1,Q/A. The MOVE1(v,c) case has the choice of node
immediately being v, and knowing that the color moved indicates that U is uniform
over [1/(1 + A),1]. Finally, MOVE2(v,c) has choice of node v, and U uniform over
the range of values which give color c.

As in the hard core gas model case, the information about moves which needs
to be saved is in fact quite small, and the path in its entirety does not need to be

saved.

7.2 Application to nonlocal chains

Of course, just because a chain is nonlocal does not mean that FMR cannot be ap-
plied. Recall the nonlocal update chain for discrete Widom-Rowlinson (Figure 3.14)
drew a set of points of a particular color which are Poisson distributed. Now sup-
pose that we are given two states X;;; and X;, and we are trying to compute ftﬂ
conditioned on the fact that f 1 (Xp1) = X,

In going from X; to X;;1, a color ¢ was chosen, all points of that color were
removed, and the color ¢ was added independently for each nonblocked node with
probability A.. In going from X;,; to X;, then, we clearly must choose the same
color ¢. Now the location of the points of color ¢ give us partial information about
what our choices for each node was. Basically, if a node is unblocked in X; and not

colored ¢, then we do not color that node c. If it is colored ¢ in X, then that node
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will be colored ¢ if it is not blocked. Finally, if a node in X; is blocked, we must
randomly choose whether or not to color the node ¢, since the value at X; imparts
no information.

In other words, at each step of the chain we distribute color ¢ as a Poisson point
process with rate A, on the nodes. The distribution of points of color ¢ in X; tells
us the value of the point process on all nonblocked nodes, which can then be easily
extended to a point process on all of the nodes. Total memory requirement is again
the memory needed to record a single step of the chain, making the memory needs
roughly the same as with CF'TP.

The theoretical advantages of FMR do not appear likely to outweigh the algo-
rithm complexity over CEF'TP. However, it is interesting to note when an interruptible

perfect sampling algorithm exists that is competitive with CFTP.



Chapter 8

Continuous Models

[ am so in favor of the actual infinite that instead of admitting that
Nature abhors it, as is commonly said, I hold that Nature makes frequent
use of it everywhere, in order to show more effectively the perfections of
its Author.

-Georg Cantor

Until now we have only dealt with discrete state spaces 2. However, Monte
Carlo Markov chain methods can also be used to obtain samples when the state
space is continuous. We begin by introducing some new techniques and notation to

deal with continous state spaces.

142



143
8.1 Continous state space Markov chains

The construction and properties of a Markov chain over an arbitrary sample space €2
are quite similar to the case when (0 is finite. First, we note that we must have a set
of measurable sets on €2, say F. Consider the stochastic process ..., X3, X4, X5,...
such that each X; is a random variable drawn from a probability space on (2, F).

Let (..., X 1, X0, X1,...,X;) be the o-algebra generated by ..., X; 1, Xj.

Definition 8.1 Let C € F. The stochastic process X = (..., X 1, Xp, X1,...) on

(2, F) is a Markov chain if
P(Xip1 € Clo(Xo, Xy, ..., X3)) = P(Xiy1 € C|X)).

Instead of a transition matrix, we now record probabilities of moving via a

transition kernal K that behaves in a very similar way to its discrete counterpart.

Definition 8.2 A kernal K : Q x F — [0,1] is a transition kernal for a Markov
chain if

K(.’L’,O) = P(Xt+1 € C|Xt = x)
for all z in Q and C € F.
Definition 8.3 Let p be a probability distribution on (2, F) and K a kernal. Then

for C e F,

PK(C) = [ K(x.O)p(da).

Fact 8.1 Suppose that the random variable X; has distribution p. Then X1 has

distribution pK .



144

Definition 8.4 Define K° = I, the kernal mapping probability distributions to

themselves. Recursively define (for all C' € F)

Kz, O) :/ K(y, C)K*(x, dy).

yeN

Fact 8.2 Note that K' = K. Moreover, for all C € F
P(Xt+s S C|Xt = fL') = KS(IL',C)
The notions of irreducibility and aperiodicity also extend in a natural way to
the continuous world.

Definition 8.5 A Markov chain is irreducible if there exists a measure ¢ on F

such that for all C" with ¢(C') > 0, and for all x € 2, there exists a t such that
K'(z,C) > 0.

Definition 8.6 Suppose that we have an irredicible Markov chain, and that €2 is
partitioned into k sets E = {Eqy,...,Ex_1}. If foralli =0,...,m—1 and all x € E;,
K(z,Q\ E;) =0 for j =i+ 1 mod k, then £ forms a k-cycle in the Markov chain.
The period of a Markov chain, is the largest value of k for which a k-cycle exists.

If k = 1, the Markov chain is said to be aperiodic.

Definition 8.7 A Markov chain is ergodic if it is both irreducible and aperiodic. It
s geometrically ergodic if there exists a probability distribution w, constant w > 1

and a function n(z) such that
1K (@, ) = 7w ()llrv < n(@)w™".

The chain is uniformly ergodic if n(v) is constant over v € Q.
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Our goal is to bound w away from 1, and show that n(z) is not exponential in the
input size for our starting value x, thereby showing that convergence to the desired
stationary distribution occurs in polynomial time.

As in the discrete case, the concept of reversibility will allow us to take exact

samples from the stationary distribution of a chain.

Definition 8.8 A kernal K satisfies the detailed balance condition or is reversible

with respect to w if for all A, B € F
m(A)K(A,B) =7(B)K (B, A).

Any distribution which is reversible with respect to K is stationary for K. If m(dx)
is a density function s(x) and K(z,dy) is a density k(x,y), then the reversibility

condition becomes s(x)k(x,y) = s(y)k(y, ).

Finally, we note that the coupling theorem carries through to the continuous

case.

Theorem 8.1 Suppose that Xy = x, Yy is distributed according to some station-
ary distribution m and the two stochastic processes are coupled. Then if Tc is the
coupling time,

1K (z, ) = 7 ()llrv < P(Te > t).

8.2 Continuous time Markov chains

Another extension of Markov chains is to the index set of the stochastic process.

Previously, our stochastic process {..., X ¢, X 5, X 4,...} was indexed by the in-
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tegers. For continous time Markov chains, the stochastic process will be indexed by
an increasing sequence of real values ..., k_1,ky =0,kq,....

Roughly speaking, continuous time Markov chains introduce “clocks” to changes.
Suppose that we are at state x. Instead of a random change in the state occurring
at every time step, a clock is attached to every random change. This clock is an
exponential random variable with rate given by a rate kernel, W (z, A). We wish to
ensure that the rate at which clocks expire is not too high, so that with probability

1 only a finite number of events occur in a finite amount of time.

Definition 8.9 We say that W : Q x F — [0,00) is a rate kernal if

[ Wiwdy) =Wz, 4)
yeA
and
/ QVV(x,da:) < W(z,Q) < oco.
PSS
Finally, we require that if W (x,dy) > 0, then W(x, A) < aW (y, A) for some con-

stant « for all A € F. (This insures that no state is left instantaneously.)

These conditions guarantee that a finite amount of time elapses between changes,
that is, P(z, = 1) > e V@Y,

Now, because we are dealing with exponential random variables, we first gather
some facts about their distribution. Suppose that F(a) denotes an exponential

random variable with rate a.
Fact 8.3 FExponential random variables have the forgetfulness property, so that for
t,s >0,

P(E(a) >t + s|E(a) > s) = P(E(a) > t) = e ™.
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Fact 8.4 The rate of the minimum of two exponential random variables is the sum

of their rates.

min{F(a), E(b)} ~ E(a+1).

Fact 8.5 For two exponential random variables, E(a) and E(b),

< +b

This first fact tells us something very important about continuous time Markov
chains. If we are at state x, and s time passes without a clock expiration, then the
distribution of each clock variable is exactly the same as it was before. Nothing
happening over a time period does not give any information about what will be the
next event.

The second fact allows us to give a full description of how the stochastic process

ooy Xiy, Xkyy s - - - may be formed. Suppose that Xy, = x. Then P(k;y1 —k; > 1) =
exp{—W (z,Q)t}, and
W(z, A)
P(Xy, A= ——"=.
( kH—l 6 ) W(flj, Q)

For notational convenience, we set X; = Xy, where k; <t < k;4q.
Definition 8.10 The transition kernel K is defined as
Kt(a:,A) == P(Xt € A|XU = .’L')

The third fact will be useful when trying to determine the probability that a
particular event occurred given that some event occurred.
Intuitively, a distribution is stationary if the rate at which probability leaves a

state is equal to the rate at which it is entering. More precisely,
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Theorem 8.2 Suppose that © is stationary for the Markov chain with rate kernel

W. Then 7W = 0.

This important property allows us to “add” two continuous time Mark chains

with a common stationary distribution.

Theorem 8.3 Let Wy and Wy be two rate kernels for which 7 is stationary. Then

Wi + Wy is the rate kernel for a new chain for which 7 is also stationary.

In other words, if we add new moves to the chain satisfying 7W,., = 0, then the

stationary distribution of the chain will remain unchanged.

8.3 The Continuous Hard Core Gas Model

In the discrete hard core gas model, a configuration consisted of a set of vertices
on a graph colored 1, and the rest colored 0. In the continuous case, we again have
a set of points colored 1, but now the points come from a continuous state space,
such as a subset of R%.

Let 2 C S, where S C R is a bounded Borel set. Then x is a configuration if
the number of points in z is finite. We will write z = {x1,...,z,}, and let n(z) be
the number of points in z. In the hard core gas model, each point has a “hard core”
of radius R/2 around it. Let p(a,b) be the distance between two points a and b.
The fact that the core is hard means that two cores cannot intersect, or equivalently
in RY, no two points of a configuration are allowed to be within a distance R of

each other. We shall refer to a configuration satisfying this property as wvalid. The
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probability distribution for the hard core gas model is

if p(x;, ;) > R for all i # j, and 0 otherwise. As in the discrete case, Z) is the
normalization constant that makes s a probability distribution.

To obtain samples from this distribution, we will use continuous time Markov
chains. The first chain we consider was proposed by Lotwick and Silverman [32]
who showed that the chain does converge geometrically to the correct stationary
distribution. In other words, for each starting state there exists constants C; and
C5 such that the total variation distance between the state of the chain after ¢ steps
and the stationary distribution is at most C; exp(—t/Cy). Of course, this result is
not helpful in practice if the constant C is exponentially large. While we do not
present a full analysis of the convergence rate, for some ranges of A we will show
that this chain does mix in polynomial time.

The chain of Lotwick and Silverman is a spatial birth death chain. These chains
have been extensively studied (see [43], [44], [36], [49]) and have been widely used
for generating point processes on subsets of R?. The idea is simple. There are
two types of events, births and deaths. Births add points to the configuration and
deaths remove points. Let = be a configuration and z a point in space S. If the
birth rate at point z given that we are currently in configuration x is b(z, z), then
the probability that a point in dz is added to z in time interval dt is b(z, x)dzdz.
Similarly if z is a point in z, then d(z,z) is the rate at which the point z dies.

In time interval dt the probability that point z is removed from configuration z is
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d(z,z)dt. Preston [40] showed the following version of reversibility for these birth

death processes.

Theorem 8.4 Let x be a configuration and z be a point in the state space. If

b(z,2)f(x) = d(z,2) f(z U {z}),
then f(x) is a stationary density for the birth death process.

To show that the Lotwick-Silverman chain has the correct stationary distribution
is an easy application of birth death reversibility. Let U(x) denote the volume that
is within distance R of x, and suppose that we have scaled the problem so that the
volume of S is 1. Then new points are added to the set z (born) in the area not
within distance R of z. Points in = are removed from the set (die) at rate 1.

Note that if we remove the restriction that the cores must not intersect, the
density just becomes f(z) = A"(x) and we have a Poisson point process on S.

When actually simulating the chain, it is quite expensive to compute 1 — U(x),
so instead an acceptance/rejection method is used. A point is chosen uniformly
at random from M at rate A. If it lies within distance R of x, it is not added,
but if no cores intersect the core of the new point, it is added. This is a thinned
Poisson process and so will have rate equal to the old rate times the probability of
acceptance, or exactly A(1 — U(x)) as desired.

Since this chain is a birth death chain, we need only verify that birth death
reversibility is satisfied. The death rate for any point is constant independent of x,

so d(z,z) = 1 for all z and . The birth rate for z such that z is not within distance
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Lotwick-Silverman Continuous Hard Core Chain

Set X = X,
Choose At exponential with rate A + n(x)
Choose U uniformly from [0, 1]
Case 1: U < A\/(A+ n(x))
Choose v uniformly at random from S
If p(v,2) > R
Set X = X U {v}
Case 2: U > A\/(A + n(x))

Choose i uniformly from {1,...,n}
Set X = X\ {z;}

Set t =t+ At

Set X; =X

R of any point in z is also a constant, A. Hence

(@)

b(z, ) f(x) = A - d(z,2)f(x U {z})

and 7(dz) = f(x)dx is a stationary distribution. The set of points in a configuration
may be though of as a queue. That 7 is the unique stationary distribution is a
consequence of the coupling lemma and the fact that for any state, there is a small
but positive probability that after 1 unit of time, the queue will be empty. Even if
the queue does not empty in this time, it will not have grown too much larger with

high probability.

8.4 Continuous bounding chains

In using CFTP, the goal is the same as in the discrete case: given an unknown state

at time —¢, determine whether or not the state becomes known at time 0. However,
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two difficulties make use and analysis of CFTP more difficult. First, it is quite
difficult to show that no matter which state we started in at time —¢, we ended up
in the same state at time 0. The number of possible states to consider is too high.

Therefore the brute force approach that worked quite well in the discrete case
will not avail us here. Instead, we use the approach of Kendall [29] where we learn

something about the unknown state at time —¢ by looking farther back in time.

Definition 8.11 Say that a point z € S has birth death interval [b,,d,] if it was

born at time b, and dies at time d,.

Note that just because a point was born at time b, does not guarantee that it
was added to the set. However, whether or not it was added to the set, it is removed
from the set at all times greater than d,. Therefore, the only points which are even
possibly part of the configuration at time —¢ are those whose birth death interval
[b.,d.] contain the time —t. This approach allows us to initialize a bounding chain.

The idea for continuous state space bounding chains is straightforward. A con-
figuration is a set of points. The bounding chain keeps track of two sets of points,
points that are known to be in the set, x4, and sets that are possibly in the set, zp.
At each step, we say that (x4, zp) bounds x if x4 C x C x4 Uxp. We shall refer to
points in X 4 as known, and points in X as unknown.

Our initialization procedure says that at time —¢, the points xp consists of all
points whose birth death interval contains —¢. We wish to take steps in the Markov
chain such that if (z4,2p) bounds z at time ¢, it will also bound it at time ' > ¢.

The procedure works as follows. Suppose a new point is born. Points which are
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blocked by points in x4 are definitely not added to the set. Also, points which are
not blocked by either x4 or zp are definitely added to the set, and so are added to
4. The only uncertainty comes when attempting to add points which are blocked
by points in zp. It is unknown whether these points are added or not, and so they
are placed in xp.

Suppose that we are given a list of birth and death times over a time interval
[a,b], and a list of z such that b, < a < d,. We first initialize the bounding chain
setting X p to be this set of z whose lifetime falls across a. We then proceed in sorted
time order, examining and dealing with births and deaths as they arise. Again, this
may be done in linear time, and so utilizing the bounding chain does not increase
the order of complexity of running the Markov simulation. Note that generation of
the initial Xp is not difficult. If we have no prior knowledge about the time before
a, then we simply use a Poisson point process with parameter )\, generating lifetime
lengths for these points and then (using the forgetfulness property of exponentials)
generate death times for each of these points. If we already know something about
birth and death times before a, we simply condition on that information when
creating the Poisson point process.

We may use the bounding chain exactly as we did in the discrete case for either
determination of mixing time, or as a black box for a CFTP perfect sampling
algorithm. As with the discrete algorithms, if we wish to experimentally determine
mixing time, we simply check whether X, is empty at time b. If it is, the state
x = () will have coupled with the stationary path. Nothing in our presentation of

the bounding chain prevents us from modifying b on the fly, and continuing until
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Bounding Chain for Lotwick-Silverman

Input: List of events, interval [a,b], {z:b, < a < d,}
Output: Xy, = (Xa, Xp)

Set Xp={z2:0,<a<d,}
For each event e in sorted time order
If e = d, for some z
If ze Xp
Set Xp %XD\{Z}
If € X4
Set XA <—XA\{Z}
If e = b, for some 2z
pr(Z,XAUXD) >R
Set XA :XAU{Z}
If p(2,X4) > R and p(z,Xp) < R
Set XD :XDU{Z}

Figure 8.1: Bounding Chain for Lotwick-Silverman

Xp is empty.

For coupling from the past, we need to be a little more careful how we generate
the list of birth death times and lifetime crossing times. We generate birth death
times in reverse, that is, starting at time 0, we move backwards in time and have
deaths appearing at rate A. For each death, we then have a corresponding birth
occur at a time earlier, such that the difference is exponential with rate 1. Because
we generate our data death first, then birth, it follows that for any time —¢, we
immediately know which birth death intervals cross —t and have death times in
[—t,0]. It remains to consider death times which cross —t and have death times
in (0,00). To limit the possibilities that we must consider, note that any lifetime

which starts before —t and ends after 0 must cross time 0 as well. The set of points
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whose lifetime crosses 0 is just a Poisson point process with parameter A\, and so we
generate this list of points. Anytime we need to see how many cross [—t, 0], we just
examine this list and see how many that died after 0 were also born before —t¢.

In the discrete case, we found that when A\ < 2/(A — 2), we could show that
the bounding chain converged in polynomial time. For the continuous case, we now
show the following. Our result is stated in terms of the number of events needed to
occur, since it is this value that represents the amount of work actually needed to

be performed in running the algorithm.

Theorem 8.5 Consider the hard core gas model with parameters X and R, and
suppose that we run the bounding chain for the Lotwick-Silverman chain forward
from time 0 for k events. Then if X < 1/Vg, after O(\*In(1/€)) steps the probability
that we have converged is

P(Xp #0) <e.

As in Chapter 4 where we first introduced bounding chains, we will require the

use of supermartingales in our analysis.

8.4.1 More on supermartingales

Recall that a supermaringale is a stochastic process such that with probability one,
ElXpnlo{..., Xi}] < X0

In expectation, a supermartingale decreases as time goes on. Now suppose that the

supermartingale never grows too fast, so that

X1 — Xy <c
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for some constant ¢. Then Azuma’s inequality [4] limits the probability that the

supermartingale grows too large.

Theorem 8.6 Let Xy, X1,... be a supermartingale satisfying X, 1 — Xy < ¢. Then
2
P[X; — Xy > a] <ex.

That is, the probability that X; rises too far above X is exponentially small in the
time ¢.

Our method of proving Theorem 8.5 will be to show that the number of unknown
nodes stays above 0 with an exponentially declining probability. The sequence
n(Xp) has particular properties, such as 0 being an absorbing state. The following

lemma shows how these properties force the process to hit 0 quickly.

Lemma 8.1 Suppose that X is a nonnegative stochastic process satisfying: 0 is an
absorbing state, X;.1 — Xy < ¢, and E[Xyy1 — X4|Xy] < q where q is a constant

between 1 and 0. Finally, if Xy is distributed as a Poisson process with parameter

A, €>0, and
2(c+ q)*[In(1/€) + (€21 — 1) )]
2 q2 b
then
P(Xt > 0) S €.

Proof: Let 75 be the first time that the process X; hits 0. Note that the stochastic

process

Xt—|—tq X; >0
Nt:

Toq X, =0
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is a supermartingale. The fact that F[X;,; — X;|X;] < ¢ insures that E[N;; —
Ny|N¢] < 0 when X; > 0. Furthermore, N, is constant for all ¢ > 79, so it is certainly
a supermartingale. We also have that N, 1 — V; < ¢+ ¢ so we may apply Azuma’s

inequality. Note Ny = Xj so P(Ny = i) = e"*\!/il. Altogether, we have that

=0
= Y P(Ny— Ny > tq—i|Ng = i)P(Ny = 1)
=0
< ie (tq—i)2/(2t(c+q)> )\)\Z/Z'
=0
S et i 0] (ler )Ny
=0
< i e—tqz/(2(c+q)2)+(62q—1)/\6—/\@2‘1 (62q)\)i/i!
=0
— ot/ 2cta)?)H(e? = 1A

For this last value to fall below ¢, we must have that

2

ﬁ + (2 — 1A < Ine
2(c+ q)*[In(1/€) + (€21 — 1) )] .
> -

which completes the proof. O

Proof of Theorem 8.5: We utilize our (by now) standard procedure of looking at

how the size of X changes with certain events, in this case the set of births and the



158

deaths of points in Xp. Let Xf) be the set Xp after i such events have occurred, and
let Fy denote the o-algebra generated by all the configurations up to the time of the
ith event. We wish to compute a bound on E[n(X}") | F]. The rate of births is A,
and the rate of deaths is n(Xp). From Fact 8.5, we know that the probability that
one of our events is a birth is A/(A + n(Xp), and the probability that an unknown
point dies is n(Xp)/(A+n(Xp)). When a point in X, dies, n(Xp) goes down by 1.
When a point is born, it only joins Xp if it tries to be born in an area blocked by
a point in Xp. This occurs with probability at most n(Xp)Vg. (This is an upper

bound since some of the unknown points’ blocked areas might overlap.) Therefore

n(X%) A
A axh) T Eae)
n(Xp)

= T Ver 1

En(Xp" Al < (-1) Von(Xp)]

Therefore when n(X%) > 1,

E[n(Xp") —n(Xp)|A] < BV
We are given that 1 < VpA, this means that n(X}) satisfies the conditions of

Lemma 8.1 with ¢ = % Note that ¢ < 1, which means that

. t (m)“"
P(n(X}) >0) <ee BV
Finally, we note that the number of events where a node in X 4 died is bounded

above by the number of births. Therefore after k events, at least k/2 events had to

have been either births or deaths of nodes in Xp, which completes the proof.O
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8.4.2 The Swapping Continuous Hard Core chain

Greenhill and Dyer [12] increased the ability to analyze the rate of convergence of
the discrete hard core chain by introducing a Broder type swapping move. We now
show that introducing the same move into the continuous hard core chain yields a
similar increase in our analytic ability. The move is as follows. If a point attempts
to be born and is blocked by exactly one point, then the blocking point might be
removed and the new point added. This swap is executed with probability 1/4.

Algorithmically, this new chain may be written as in Figure 8.2.

Swapping continuous hard core chain

Set xr + X,
Choose 6t exponential with rate A + n(x)
Choose U uniformly from [0, 1]
Case 1: U < A/(A+n(x))
Choose v uniformly at random from S
If p(v,2) > R
Set X + X U {v}
If 32 € 2 such that p(v, z) < R and p(v,z \ {z}) > R
With probability 1/4 set x «— x \ {z} U {v}
Case 2: U > A\/(A+n(x))
Choose i uniformly from {1,...,n}
Set x + x \ {z;}
Set t <t + 0t
Set X, <z

Figure 8.2: Swapping continuous hard core chain

This swap move only moves between states with the same stationary probability,
and Wyap (@, dy) = Wiyaep(y, dr) no matter what the probability that we execute the

swap (when the value of 1/4 was chosen to make the analysis as tight as possible).
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Hence 7 is also stationary for this rate function, so by Theorem 8.3 this new chain
has the same stationary distribution as the old one. The new moves do not increase
the number of points in the configuration, therefore the same argument that showed
geometric ergodicity for the old chain applies here as well.

The bounding chain for this swap chain is analogous to that introduced for the
Dyer Greenhill chain. Deaths occur exactly as before. If a point in xp dies, it is
removed from xp. If a point in x4 dies, it is removed from x 4.

Suppose that a new point is born. If it is not blocked by any point, either in x4,
or xp, then it is added to z 4. If the point is blocked by one point in xp, and we
choose not to swap, then the point is not added. If the point is blocked by two or
more points in x4, the point is not added. If the point is blocked by two or more
points in zp, and no points in x4, we are unsure whether or not to add the point
to the configuration, and so the point is added to zp. All of these moves are the
same as for the bounding chain for the Lotwick-Silverman chain.

The interesting cases come when the point added is a candidate for a swap, and
the algorithm chooses to execute the swap. Suppose the point is blocked by exactly
one point in x4 U xp. Then the blocking point is removed, and the new point is
added to z4. If the point is blocked by exactly one point in x4 and at least one
point in zp, then we are unsure about two points, the new point might be added
and the blocking point in x4 might be removed. Therefore both of these points

must be placed in zp.

Theorem 8.7 Consider the hard core gas model with parameters X and R, and

suppose that we run the bounding chain for the Lotwick-Silverman chain forward
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from time 0 for k events. Then if X < 2 — AV, then after O(\*In(1/¢)) steps the

probability that we have converged is

P(Xp #0) <e.

Swapping continuous hard core bounding chain

Input: List of events, interval [a,b], {z: b, < a < d,},
the swap execute rolls for each birth
Output: X, < (X4, Xp)

Set Xp <+ {z:b, <a<d,}
For each event e in sorted time order
If e = d, for some z
If z€ Xp
Set XD (—XD\{Z}
If e X4
Set X4 %XA\{Z}
If e = b, for some z
Let D be the number of points y in Xp such that p(z,y) < R
Let A be the number of points y in X4 such that p(z,y) < R
IfD=A=0
Set XA %XAU{Z}
If D>1,A =0 and we do not execute a swap at this birth
Set XD (—XDU{Z}
If D=1,A =0 and we execute the swap
Set Xp <+ Xp\{yv € Xp:p(y,2) <R}
Set XA %XAU{Z}
If D> 2, A <1 and we execute the swap
Set Xp <+ XpU{z}U{y e Xa:p(y,2) <R}
Set X4« Xy \{ye X4:p(y,2) <R}

Figure 8.3: Swapping continuous hard core bounding chain

The computer time needed to generate a simulation is the number of events

which occur, which is why we phrase this theorem using events rather than time.
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Proof: The proof is very similar to the case of the nonswapping chain, and so we
will utilize the same notation as in that proof. We again will only consider those
events capable of changing n(X?%), namely, all births, and deaths of nodes in X%,
These events occur at rate r = A + n(X}).

The death rate contribution to E[n(Xp5™) | 7] is the same as before; what
changes is the contribution of the birth rate. Before, births could only increase
n(X5"), but with the introduction of the swap move, it can also decrease the
number of unknowns.. Suppose that a point is blocked by a single point in X%,
Then a birth and swap at that point removes a point from X%, and so n(X?%)
decreases by 1. If there is a birth and no swap, then the new point joins X% and
n(X%) increases by 1.

If, however, a new point is blocked by a point in X% and X, then a swap results
in two points being added to Xp. If the point chooses not to swap, then it cannot
be born since it is blocked by X%.

Let A; denote the area blocked by a single point in X% and no points of X?.
Let A, denote the area blocked by more than one point in X% and no points of X,
and let Az denote the area blocked by at least one point in X% and exactly one

point in X7,

_|_

4 T

r
3 ()\A1> A,

() () 2
4 T r

Bln(x5") ~n(xp) | 7] < ()2 (1) <ﬂ>
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T

Note that each point in A; and Aj is blocked by at least point within distance R of
an unknown point, and each point in A, is blocked by at least two unknown points.
Hence A; + 245 + Az < n(X})Vg. Therefore

n(Xp)[=1 +n(Xp)Vr/?]
A+ n(X})

E[n(Xp") —n(X}) | A <

and we may apply Lemma 8.1. As in the nonswapping chain, at least half of the

events must be births or deaths of points in Xp, completing the proof.O]

We have proven that this chain converges rapidly for values of A which are twice
as high as for the nonswapping chain. This swap move may be added to other chains

as well to increase their performance.

8.5 Widom-Rowlinson

The Widom Rowlinson model was originally conceived as a continuous model [49],
where the density of a configuration of points © = (z1,29,...,2¢) is

AP g )
~ .

This is exactly analogous to the discrete case, and each of the chains we examined
there has a corresponding continuous chain.
The birth death chain given for the discrete model actually comes from a dis-

cretization of the birth death chain for the continuous model. We say that a point
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v and color i is blocked if p(v, ;) < R for some j not equal to i.

Birth death continuous Widom-Rowlinson chain
Set x + X,
Choose 6t exponential with rate Y-; A; + n(x)
Choose U €y [0, 1]
Set po < 1/(1+X; Ai)
Forall0<i<n

Set p; + Xi/(1+2; \)
Choose i € {0,...,Q} according to p
Ifi=0

Choose v €y 2, U---Uxg

Let j be the color such that v € x;

Set z; + z; \ {j}

Else
If color 7 is not blocked for node v
Set z(v) =i

Set Xt+1 —x

Figure 8.4: Birth death continuous Widom-Rowlinson chain

As pointed out in [16], this chain exhibits a monotonic structure when @ = 2.
For (2 > 2, we must use a bounding chain. As with the hard core case, a state y
of the bounding chain will be (1, o, ..., 29, 21, 22, ..., 2¢), where each x; contains
points which are known to be colored i, while z; refers to those points that are
might or might not be in the configuration. If they are in the configuration, though,
they are definitely colored i. Let n(z) = |z, U+ - Uxg| and n(z) = |z U -+ Uzg|.
Consider a point v and color 7. If p(v,z;) < R for some j # i, then we say that v
is blocked for ¢ by a known node. If p(v, z;) < R for some j # i, then we say that

v is blocked for ¢ by an unknown node.

Theorem 8.8 Consider the Widom-Rowlinson model with parameters \;, © running



Birth death continuous Widom-Rowlinson bounding chain

Set y < Y}
Choose At exponential with rate Y-, \; + n(z) + n(z)
Choose U uniformly from [0, 1]
Set po < 1/(1+2; \i)
Forall0<i<n
Set p; ¢ Ai/(1+ 3 \)
Choose i € {0,...,Q} according to p
Case 1: i1 =0
Choose v €y 21 U---Uxg
Let j be the color such that v € x;
Set Tj 4 X \ {j}
Set z; « z; \ {/}
Case 2: i > 0, v not blocked for ¢
Set X, &— ;U {Z}
Case 3: i > 0, v blocked for ¢ only by unknown nodes
Set 2 — z; U {Z}
Set t « t + 6t
Set YV, <y = (z1,...,2¢,21,.--,2Q)

Figure 8.5: Birth death continuous Widom-Rowlinson chain
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from 1 to Q and R, and suppose that we run the bounding chain for this simple birth

death chain forward from time 0 for k events. For QQ = 2 let

and let

1 1
= —+ =/ A A
o 2+2 179,

a:Z)\i—min)\i

for Q > 2. If a < AVg, then after O(M%aln(l/e)) events the probability that we

have converged is
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Proof: We consider only those events capable of changing the size of n(z), namely,
births of new points and deaths of points in z. Let z; denote the unknown set of
points of color i at the beginning of a bounding chain step, and z; the set afterwards.
Let F denote the sigma algebra generated by events up to the time of z.

A bad event occurs when a point of color 7 is blocked by a point in z;, where
j # 4. Given that we have a birth, a point in z; blocks a volume Vg, and so the

total amount of volume blocked could be as high as Vg[n(z) — |z]]-

E[z; — z|F] = P(birth of color i) P(birth blocked) — P(death of color 7)

N T Ol N

RO ESYPY Valn(2) = ] n(z) +>; N
Ai

- n(z) + ;N

And so just as for the discrete chain we have that E[2'| = E[E[?'|z]] < E[AFE]z]] =
AE]|z], since the elements of A are all nonnegative. Let 2' denote the unknown set of
points at time £. An induction yields E[z!] < A'E[2°], so that ||E[z]|| < o||E[2"]]],
where « is the highest magnitude eigenvalue of A.

As in the discrete case, the only remaining problem is how to bound a. When
Q = 2, we preform the computation directly, and a = Vz[1/2 + 1/2¢/A\A\y]. For
@ > 2, the method of Gershgorin disks may be used to show that

a<l-— i + lVRmaX{X:)\,} =1- l ll — Vg lZ)\z] —m_in)\i] .
Q Qi |z Q ; i

To complete the proof, we recall that (1 — 6/Q)%/° < 1/e. O
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8.5.1 Continuous swapping chain

The swap move is not difficult to describe in the continuous case, and it will double
the range of \; over which we can prove that the bounding chain detects complete
coupling in polynomial time. When a point of color ¢ is blocked by any number of
points of color j different from ¢ in the birth death chain, that point is not born.
In a swap move, if a point of color 7 is blocked by exactly one point of color j # 1,
then with probability psy., a swap move is executed and the point is born, and the

blocking point is removed from the set.

Swapping birth death continuous Widom-Rowlinson chain

Set r + X,
Choose §t exponential with rate >; \; + n(x)
Choose U €y [0, 1]
Set po < 1/(1+X; Ai)
Forall0 <i<n
Set p; < i/ (1+ 3 \)
Choose i €, {0,...,Q} according to p
Case 1: 1 =0
Choose v €y 21 U -+ -9
Let j be the color such that v € x;
Set z; < x;\ {j}
Case 2: 7 > 0 is not blocked for node v
Set z; « x; U {v}
Case 3: i > 0 is blocked for v by exactly one point w € z;
If U < powap
Set z; + z; \ {w}
Set z; < x; U {v}
Set Xt+1 — T

Figure 8.6: Swapping birth death continuous Widom-Rowlinson chain

The bounding chain must now take into account the possibility of a swap type
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move. We have the same cases that arise in the discrete case.

As in all cases dealing with the swapping move, changing the value of py,,, affects
how quickly it actually converges. When pg,qp = 1/4, good things happen. The
only difference between the theorem below and the theorem for the nonswapping

chain is that here o may be larger by a factor of 2.

Theorem 8.9 Consider the Widom-Rowlinson model with parameters \;, © running
from 1 to Q and R, and suppose that we run the bounding chain for this simple birth

death chain forward from time 0 for k events. For QQ > 2, let
1 .
o= 52)\, — min \;.

If Pswap = 1/4 and a < AVg, then after O()\VR%Q In(1/€)) events the probability that

we have converged is

For () = 2, either let psyap = 1/4 and

o = — max \;,
2 i

as above, or let psyap = 1/3 and
2/1 1
=5 (5+avnn).
FEither way, if a < A\Vg, the same probability of convergence holds.

Proof: Let |D;| be the set of unknown points at time ¢. Then these points cover

area in three ways. (These are similar to the three classifications of nodes seen in



169

the discrete case.) To change the value of |D;|, either an unknown point died, or
a point being born resulted in one or two nodes being switched to unknown. The
rate at which points are born or die from the unknown set is r = |Dy| + 3, A;.

Let D' denote the area covered by exactly one unknown point of some color.
When a point is born in D!, we are in case 4 in the swapping bounding chain. Let
D? denote the area covered by exactly one known point of color 7 and at least one
unknown point of color 7, this corresponds to case 5. Finally, let D} denote the area
covered by exactly at least two unknown points of color + and no known points, so
that when a point is born here we are in case 3.

Suppose that ) > 2, so that & = >_; A\; —min; \;. Case 4 can have two outcomes.
If we choose to swap, then D, is smaller than D; by one node, but if we do not
choose to swap it grows by one. For a point v € D!, let b, be the color of the point
¢ such that v is being blocked by a point in z;. The point is that births of color b,
are not blocked and do not affect |D,| if the birthing point has color i, but might
change if the new point has color j # i. This event occurs with probability X, /r.
Given that we have a birth event but that we have not yet selected a position, the
expected change due to points in D! will be

/ !

\
by by o by
/veDl (+1)(1 - pswap)T - pswapTdv = /UeDl(l — 2pswap)7dv
(0%
< /’UEDl (1 - 2pswap)?dv

- Dl(l - 2pswa}0)g
r

where the inquality is valid as long as psuep < 1/2. We will later set pgyap = 1/4, s0

this is true.
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For case 5, choosing to swap makes |D;, 1| — |D;| = 2, but is unchanged if we do

not swap. The contribution from this case is

A 9 o
/UED2 2pswapTv S D (2pswap);-

In case 3, the new node is always part of Dy so |Dyy1| — |D;| = 1. Therefore

the contribution is independent of pgyqp,

The final event that may occur to affect |D;| is the death of an unknown node,
which occurs with probability |D,|/r and results in the removal of exactly one

unknown node. We now set pg,qp = 1/4, so that

o o « D
E[Dusr| ~ 1D | F] < D1~ i) + Do) + 02— 12
D
< - [p'+D?+2D7] _ 1D
2r T

Points in D! and D? are covered by at least one node of D;, and points in D, are
covered by at least two nodes of Dy, so D'+ D? +2D?* < Vi|Dy|. (The existence of
this bound is why we choose pgyqp as we did.

Following our usual derivation, E[|D;|] < 3'E[|Dg|] where

OéVR/Q —1
770 .

B=1

We have that § < 1 when 2aVg < 1 and since |D| is integral and |Dy| is poisson
with rate >, A;, Markov’s inequality finishes the proof.
For ) = 2, A = max; \;, so we may use that for a. However, we may also go

into more detail, splitting apart D' into D] and D). Let D] be the area blocked
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for 2 by exactly one unknown point of color 1 and D} be the area blocked for 1 by
exactly one unknown point of color 2 (these areas may overlap). Split D? and D?
in a similar fashion.

As in the regular birth death chain, let z; denote the number of unknowns of
color i € {1, 2}, and 2, denote the number of unknown points after the step is taken.

Then from our discussion above, we know that

A A D
Bl =21 | F] = =2 D31 = Duap) + 205 Buan)] — 2D} Do — %
N2
A2

— =21V
7"3le

IN

IN

using the fact that D+ D2 < 2, Vx. An analogous equation may be derived for the
expected change in z,.

This is the same recurrence that we have seen for the () = 2 case in the regular
birth death chain (for both the continuous and discrete case.) The eigenvalues of
the system are smaller than in the previous case by a factor of 2/3, giving the result.

O

The moral of this chapter is: everything that works in the discrete world carries

over to the continuous realm with no problems.



Swapping birth death continuous Widom-Rowlinson
bounding chain

Set y «+ Y,
Choose At exponential with rate Y°; \; + n(x) + n(z)
Choose U uniformly from [0, 1]
Set po < 1/(1+X; \i)
Forall0<i<n
Set p; < Ai/(1+ X, \i)
Choose i € {0,...,Q} according to p
Case 1: 1 =0
Choose v €y 21 U -+ 2¢
Let j be the color such that v € x;
Set Tj < X \ {]}
Set Zj < %5 \ {]}
Case 2: i > 0, v not blocked for ¢
Case 3: 7 > 0, v blocked for 7 by at least two unknown nodes
Case 4: 1 > 0, v blocked for ¢ by exactly one unknown node w € z;
If U < pswap
Set z; «+ z; \ {w}
Set z; « x; U {v}
Else Set z; < z; U {v}
Case 5: 1 > 0, v blocked for ¢ by exactly one known node w € z;,
and at least one unknown nodes
IfU < Pswap
Set z; < z; \ {w}
Set z; < z; U{w}
Set z; « 2z; U {v}
Set t «+ t+ 6t
Set Y, <y = (v1,...,20,%1,---,20Q)

Figure 8.7: Swapping birth death continuous Widom-Rowlinson chain
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Chapter 9

Final thoughts

“I don’t see much sense in that.” said Rabbit. “No,” said Pooh humbly,
“there isn’t. But there was going to be when I began it. It’s just that

something happened to it along the way.”

-A.A. Milne

The theoretical bounds on the mixing time derived using bounding chains are
always weaker than what may be found experimentally. For example, in chapter 5
we saw a bounding chain for the list update problem that is guaranteed to run
quickly when the probabilities of selecting items are geometric, i.e., p;/p;+1 < 0 for
some 6 < 1/5. When # > 1/5, experiments must be run to see how quickly the
bounding chain converges.

As shown in the graph below, this bounding chain appears to be polynomial
when 6 = 0.4 or lower, but it also clearly exponential when § = 0.5. These running

times are an average of 1000 runs of the bounding chain.
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List Update Chain
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Figure 9.1: T for list update chain

Given that practice always wins over theory, there are of course several reasons
why we are still interested in theoretical bounds on the time bounding chains need
to detect complete coupling. First, the theoretical range of parameters over which
the chain is rapidly mixing is a solid indication of the actual usefulness of the
chain. As we have seen, the simple local analysis of bounding chains tends to
give results that are within a constant factor of the true answer. This is a trivial
statement for bounding chains such as the list update chain for geometric weights,
where the parameter 6 seems independent of n. However, for chains such as the
antiferromagnetic Potts model where the range of A where the chain is rapidly

mixing depends quite strongly on A, this is a somewhat surprising fact.
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Second, as an immediate corollary of the bounding chain mixing time we get
an immediate bound on the mixing time of the chain, and a priori bounds on the
running time of CFTP and FMR for perfect sampling. It is always nice to know
that certain problems, such as randomly sampling from the sink free orientations of
a graph, have polynomial (expected) running time algorithms.

Coupling from the past is a simple idea with extraordinary consequences for
the practice of Monte Carlo Markov chain methods. However, using CFTP is not
always easy. Bounding chains are an important tool for using perfect sampling
algorithms such as CFTP and FMR, or even just for determining the mixing time
of a chain. The fact that it leads to relatively straightforward local analyses of the

original chains is an added perk that makes this method surprisingly powerful.
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