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In Monte Carlo simulation� samples are drawn from a distribution to estimate

properties of the distribution that are too di�cult to compute analytically� This

has applications in numerous �elds� including optimization� statistics� statistical

mechanics� genetics� and the design of approximation algorithms�

In the Monte Carlo Markov chain method� a Markov chain is constructed which

has the target distribution as its stationary distribution� After running the Markov

chain �long enough	� the distribution of the �nal state will be close to the stationary

distribution of the chain� Unfortunately� for most Markov chains� the time needed

to converge to the stationary distribution 
the mixing time� is completely unknown�

Here we develop several new techniques for dealing with unknown mixing times�

First we introduce the idea of a bounding chain� which delivers a wealth of informa�

tion about the chain� Once a bounding chain is created for a particular chain� it is

possible to empirically estimate the mixing time of the chain� Using ideas such as

coupling from the past and the Fill�Murdoch�Rosenthal algorithm� bounding chains

can also become the basis of perfect sampling algorithms� Unlike traditional Monte



Carlo Markov chain methods� these algorithms draw samples which are exactly

distributed according to the stationary distribution�

We develop bounding chains for several Markov chains of practical interest�

chains from statistical mechanics like the Swendsen�Wang chain for the Ising model�

the Dyer�Greenhill chain for the discrete hard core gas model� and the continuous

Widom�Rowlinson mixture model with more than three components in the mix�

ture� We also give techniques for sampling from weighted permutations which have

applications in database access and nonparametric statistical tests� In addition�

we present here bounding chains for a variety of Markov chains of theoretical in�

terest� such as the k coloring chain� the sink free orientation chain� and the anti�

ferromagnetic Potts model with more than three colors� Finally we develop new

Markov chains 
and bounding chains� for the continuous hard core gas model and

the Widom�Rowlinson model which are provably faster in practice�
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Chapter �

The Need for Markov chains

How dare we speak of the laws of chance� Is not chance the antithesis

of all law�

�Bertrand Russell� Calcul des probabilit�es

Modeling a roulette wheel is quite a bit simpler with probability theory than

with Newtonian mechanics� While it is theoretically possible to observe the initial

angular momentum imparted to the wheel and ball� followed by an equally intense

investigation into the frictional properties that cause the ball to land on red instead

of black� a probabilistic approach captures the phenomenon in an elegant man�

ner� and yields results that are both accurate and insightful as regards long term

predictions over whether the player will return home poorer than before�

Analysis of gambling systems provided an initial impetus to build a theory of

probability� but today many systems whose interactions are too complex to model

exactly are modeled probabilistically� Often this provides enormous gains both in

�



�

the simplicity of the model and in the ability to analyze various properties of the

system�

Today�s models have evolved into probability distributions that are quite easy

to describe� but which require the use of sophisticated arguments to analyze di�

rectly� A way to avoid use of these complicated techniques is to use a simulation

approach� When using this technique� no attempt is made to analyze properties

of the distributions directly� instead samples are drawn from the distributions� and

then statistical estimates are formed for properties of interest� Once the ability to

generate random samples is given� a host of statistical methods can be brought to

bear on the problem� The accuracy and application of these statistical estimates has

been extensively studied� The question that remains is how exactly does one draw

these random samples in an e�cient manner� The answer for many applications is

to use Monte Carlo Markov chain methods� This work introduces a new method

in this area called bounding chains� an idea that often can lead to theoretical and

experimental insight into a problem�

In this �rst chapter we describe the Markov chain method� starting with basic

de�nitions and facts concerning Markov chains and laying out the notation that

will be used throughout this dissertation� The next chapter presents the discrete

models and distributions to which we will be applying our methods� after which

we describe the Markov chains developed previously for these problems� In the

fourth chapter we introduce our primary tool� bounding chains� Bounding chains

provide a basis for algorithms for experimentally determining the time needed to

draw approximate random samples using a Markov chain� as well as forming the



�

foundation for algorithms that draw perfectly random samples� After introducing

bounding chains� we show how this approach may be utilized for each of the discrete

models discussed earlier� The following chapter explores the di�erence between

approximate and perfect sampling� with an exposition of one technique for perfect

sampling� the coupling from the past method of Propp and Wilson ����� After

that� we present another perfect sampling technique� an algorithm of Murdoch and

Rosenthal that builds on earlier work of Fill ����� as well as the �rst analysis of its

running time� Finally we turn to continuous models� and explore how the successful

techniques from the discrete case may be used to construct and analyze Markov

chains for in�nite state space processes�

For many probability distributions of interest� we present the �rst algorithms for

perfect sampling� the hard core gas model using the Dyer�Greenhill chain� the heat

bath chain for sink�free orientations of a graph� the heat bath chain for k colorings

of a graph� the antiferromagnetic Potts model� 
these last two were independently

discovered though not fully analyzed in ������ the move ahead one chain for database

access� the continuous Widom�Rowlinson mixture model with at least � elements in

the mixture� the antivoter model� and the Swendsen�Wang chain for the Ising model�

For the continuous hard core gas model we develop new bounds on the mixing time

of the chain� In addition� we develop new Markov chains for the continuous hard core

gas model� the repulsive area interaction model and the Widom�Rowlinson model

which have provably stronger bounds on the mixing time than were previously

known� The work on perfect sampling and mixing times primarily emerges from an

understanding of bounding chains� a simple but extraordinarily powerful tool� The



�

improved chains come from a generalization and application of a simple �swapping	

move of Broder to a wide variety of chains�

��� Monte Carlo Markov chain methods

Anyone who has ever shu�ed a deck of cards has used a Monte Carlo Markov

chain 
MCMC� method� The goal of any MCMC algorithm is to draw a random

sample from a speci�c probability distribution� In the case of shu�ing cards� the

distribution is the uniform distribution over all permutations of the cards�

A Markov chain is a stochastic process possessing the forgetfulness property�

Informally� this means that the next state of the chain depends only on the value

of the previous state and random choices made during that time step� It does not

depend on the value of any prior state� This property makes simulation of a Markov

chain very easy� The user need only compute a random function of the current state

without regard to the values of prior states�

For the �rst �ve chapters of this dissertation� we will be dealing with Markov

chains which have a �nite state space� and so the de�nitions we give here will apply

to this discrete case� In chapter � we expand our scope to include continuous state

spaces� and we present a more general treatment of Markov chains in that chapter�

����� Markov chains

Let � be a �nite set which we will call the sample space or state space� Let

X � 
� � � � X��� X�� X�� � � �� be a stochastic process with values chosen from �� Let
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�
� � � � X��� X�� X�� � � � � Xi� be the ��algebra generated by � � � � Xi��� Xi�

De
nition ��� The stochastic process X � 
� � � � X��� X�� X�� � � �� on � is said to

be a Markov chain if

P 
Xi�� � jj�
� � � � Xi��� Xi�� � P 
Xi�� � jjXi��

We will use a matrix P to denote the probability of moving from state i to state

j at a given time� More precisely� let P 
i� j� � P 
Xt�� � jjXt � i��

De
nition ��� An j�j � j�j matrix P is a transition matrix for a Markov chain if

P 
i� j� � P 
Xt�� � jjXt � i�

for all i and j in ��

From the de�nition of P this fact follows immediately�

Fact ��� Suppose that the random variable Xt has distribution p� Then Xt�� has

distribution pP �

An easy induction argument together with the above fact yields the following�

Fact ��� Let P k
i� j� denote the i� j element of matrix P k� Then

P k
i� j� � P 
Xt�kjXt � i��

Often it is desirable that the process X be able to move over every state of the

Markov chain�
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De
nition ��� A Markov chain is connected or irreducible if for all i� j in � there

exists a time t � j�j such that

P t
i� j� � ��

Consider a random walk on a graph where the states are nodes of a bipartite

graph and at each time step the state changes to a random neighbor of the node�

Then at all even times the state will be in one bipartition� and at odd times it will

be in the other� We say that such a Markov chain has period �� More generally� we

have the following de�nition�

De
nition ��� Suppose that we have an irreducible Markov chain� and that � is

partitioned into k sets E � fE�� � � � � Ek��g� If for all i � �� � � � � m � � and all

x� y � Ei�
P

y�Ej P 
x� y� � � where j � i � � mod k� then E forms a k�cycle in the

Markov chain� The period of a Markov chain is the largest value of k for which a

k�cycle exists� If k � �� the Markov chain is said to be aperiodic�

Together� the properties of aperiodicity and irreducibility have important impli�

cations for a Markov chain�

De
nition ��� A Markov chain is ergodic if it is both connected and aperiodic�

We have seen that if Xt has distribution p� then Xt�� will have distribution pP �

If in fact� pP � p� then Xt�� will have the same distribution as Xt� Induction can

be used to show that Xt� will all be identically distributed for all t� � t�

De
nition ��� If �P � �� then � is a stationary distribution of the Markov chain�





Throughout this work� the symbol � will be used to denote the stationary distribu�

tion of some Markov chain� though often we will describe � before we describe the

Markov chain for which it is the stationary distribution�

Ergodic Markov chains are useful for the following reason �����

Theorem ��� An ergodic Markov chain has a unique stationary distribution�

Intuitively� a Markov chain step represents a moving of probability �ow along

edges 
i� j� such that P 
i� j� � �� The stationary distribution is the probability

distribution such that probability �ow into each node is exactly balanced by the

probability �ow out of each node� This is a �general balance	 condition that �ow in

equals �ow out� A more restrictive condition would be to require that �ow across an

edge in one direction is exactly balanced by the �ow across the edge in the opposite

direction�

De
nition ��� A Markov chain is reversible or is said to satisfy the detailed bal�

ance condition if for all i� j in ��

�
i�P 
i� j� � �
j�P 
j� i��

If �
i�P 
i� j� � �
j�P 
j� i� then we say that the Markov chain is reversible with

respect to the distribution � �and in fact � will be a stationary distribution of the

chain��

A Markov chain satis�es the detailed balance condition if at stationarity� the

probability �ow along each edge 
i� j� is the same as the probability �ow along each

edge 
j� i�� The following shows that detailed balance is a stronger condition than

general balance�
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Fact ��� If a Markov chain is reversible with respect to the distribution p� then p

is a stationary distribution for the chain� If the Markov chain is connected� this p

is the unique stationary distribution for the chain�

The names �reversibility	 and �detailed balance	 appear to have nothing what�

soever to do with one another� In chapter � we go into more detail about why this

condition is also called reversibility�

����� Going the distance

Our ultimate goal is to sample from a target distribution� Given an algorithm which

generates from some probability distribution� we need a method for determining

when our algorithmic output is close to our desired distribution� That is� we need

a metric on distributions�

We will use two common measures of distance� the total variation distance� and

the separation�

De
nition ��� The total variation distance between a pair of distributions p and

q is denoted jjp� qjjTV � and de	ned as

jjp� qjjTV � sup
A��

jp
A�� q
A�j�

The following fact about total variation distance will come in handy later�

Fact ��� For discrete state spaces ��

jjp� qjjTV �
X
x�j�j

�

�
jp
x�� q
x�j�
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The separation between a distribution and � is de�ned as follows�

De
nition ��	 The stationary distance between p and � is denoted jjp� �jjS� and
de	ned as

jjp� �jjS � sup
A��j��A���

p
A�� �
A�

�
A�
� sup

A��

�
�� �
A�

p
A�

�
�

Since �
A� � � for all A � �� clearly jjp� �jjS � jjp� �jjTV � and this is a stronger

way of measuring how far p is from stationarity�

These two means of quantifying how close the current state is to stationarity

have some advantageous theoretical properties� and are by far the most commonly

seen in practice�

The heart of the Monte Carlo Markov chain method is the idea that if a chain

is run for a long time from any starting distribution� then it will move towards a

stationary distribution of the chain� Armed with our metrics� we may now make

statements about limits of distributions� and make this concept precise�

Theorem ��� Suppose we have an aperiodic Markov chain� Then limt�� pP t will

be stationary� and if the Markov chain is ergodic� then

lim
t��

pP t � ��

where � is the unique stationary distribution of the chain�

Once we know that pP t is converging to �� the next logical question is� how fast

is it converging� We measure this by the mixing time of the chain� A fact will make

this de�nition easier�
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Fact ��� Given an ergodic Markov chain with stationary distribution �� then we

have that jjpP t � �jjTV is a monotonically decreasing function of t� Put another

way� jjpP t� � �jjTV � jjpP t � �jjTV for all t� � t�

Let �x denote the distribution that puts probability � on state x and � elsewhere�

and set P t
x � �xP

t
x� This is the distribution of a process that was begun in state x

and run for t time steps�

De
nition ���� Let �TV 
x� 	� be the smallest time such that jjP t
x � �jjTV 
 	� Let

�TV 
	� � max
x��

�TV 
x� 	��

De	ne �S
x� 	� and �S
	� in the same fashion� using the stationary distance�

Once we know the mixing time of a chain� describing the basic Monte Carlo

Markov chain method is easy�

Monte Carlo Markov chain MCMC� method

Input
 	� 
�� P �

Set X� � x for some x � ��
For i � � to tx
	�
Take one step on the Markov chain 
�� P � from Xi

Set Xi�� to be the output of this step
Output Xtx���

Figure ���� General Monte Carlo Markov chain method

The only thing preventing this from being an actual algorithm is lack of knowl�

edge about the value of �x
	�� While many heuristics exists for determining this
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value� we will concern ourselves in the following chapters with developing upper

bounds for �
	� which are always accurate�

De
nition ���� When �
	� is polynomial in ln
�� and ln
��	�� we say that the

chain is rapidly mixing�

In this work we will develop methods for showing when chains are rapidly mixing�

and ways to deal with them when they are not�



Chapter �

The Discrete Models

The laws of history are as absolute as the laws of physics� and if the

probabilities of error are greater� it is only because history does not deal

with as many humans as physics does atoms�

�Isaac Asimov� Foundation and Empire

The Monte Carlo Markov chain method is applicable to an amazing range of

problems� Anywhere one wishes to obtain estimates of statistics for a probabilistic

model� often MCMC is the only reasonable approach for even approximating the

answer to a problem�

One of the richest sources of problems in this area comes from statistical mechan�

ics� In this area� substances are modeled as random samples drawn from probabil�

ity distributions� These distributions have particular values for physical parameters

such as energy� Any real substance contains on the order of ���	 particles� so central

limit theorems de�nitely apply� and statistics for a model are often highly concen�

��
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trated about a single value� Naturally� in evaluating the usefulness of a particular

model� the question arises of what is the average of a particular statistic over a dis�

tribution� For special cases� this question may be answered analytically� but often

the distribution is too complex to allow for a direct approach�

What is perhaps surprising is that many of these models from statistical physics

have counterparts of interest in theoretical computer science� Evaluation of most

statistics of interest in these models are examples of �P �complete problems� and

often simply being able to generate a random sample from these problems cannot

be done e�ciently unless RP � NP� These statistical models were introduced 
in

many cases� decades before the corresponding graph theoretical problem was shown

to be NP�hard�

Recall that a problem is in NP if it is a decision problem where a certi�cate

that the answer is true may be checked in polynomial time� Problems in this class

include determining whether a boolean expression is satis�able or whether or not

a graph has a proper � coloring� Optimization versions of problems in NP include

the traveling salesman problem and integer programming�

The class �P is the set of problems where the goal is to count the number of

accepting certi�cates to a problem in NP� For example� consider once more the

problem in NP of �nding an assignment of variables which leads to a given Boolean

expression being true� The corresponding problem in �P is to count the number

of assignments which lead to the expression being true� Clearly a problem in �P

is more di�cult than one in NP� since if we know how many assignments are true�

then we certainly know if at least one assignement is true�
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Given the di�culty of solving a �P problem exactly� the logical question is� when

can we develop algorithms which approximate the true answer� For most of these

problems� the ability to sample from the distribution of interest immediately yields

such an approximation algorithm �����

The statistical physics models we consider are interesting for their ability to

model and predict real world substances� and also for their theoretical properties�

Often these models exhibit a phenomenon known as a phase transition� where a

small change in the parameter of the model leads to an enormous change in the

macroscopic properties of the distribution� Phase transitions are often linked to the

speed at which a Markov chain simulation runs� Roughly speaking� on one side of

the phase transition a chain may be rapidly mixing� but on the other side it may

converge very slowly�

This behavior is similar to that of the NP�complete problems related to these

models� It is well known that for many problems approximating an answer to an

optimization problem to within a certain constant or higher may be possible in

polynomial time� while any improvement in that constant leads to a NP�complete

problem�

For all the models we consider� the sample space will be the colorings of a graph�

that is� � � CV where V is the vertex set of a graph 
V�E� and C � f�� � � � � Qg
is a set of Q colors� This contains a wide variety of problems� from generating a

random permutation 
where � � V V � to mixture models of gases� Often the graphs

considered in these model are simple lattices in � or � dimensions� although they

will be de�ned for arbitrary graphs� Throughout this work we will use n to refer to
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the number of nodes in the graph� and m to refer to the number of edges�

Of course� not all of the models we will consider come from statistical physics� We

also present problems arising from database searches and the numerical evaluation of

statistical tests� as well as several models of interest for their theoretical properties�

��� The Ising model

Perhaps the most venerated model in statistical physics is the Ising model� 
This

is sometimes called the Lenz�Ising model since Lenz �rst proposed it to Ising� who

was his student at the time�� The model is quite simple� yet contains within it the

phase transition behavior mentioned earlier�

The model was �rst introduced as a model of magnetism� More recently it has

found use as a model of alloys� and for Quantum Chromodynamics computations�

The idea is simple� Our color set consists of two colors C � f��� �g� Following the

use of the Ising model as a model of magnetism� we shall refer to nodes colored �

as spin up and nodes colored �� as spin down�

A con�guration x consists of an assignation of colors to each of the nodes of the

graph 
V�E�� The Hamiltonian of a con�guration H
x� is set to be

H
x� � � X
�i�j��E

�i�j�x
i�x
j��

The  variables measure the strength of interaction across a particular edge� Al�

though the methods we will discuss can deal with the case of arbitrary � for sim�

plicity we will assume that every �i�j� is ��



��

The Ising model is a probability distribution on the set of con�gurations� The

probability of selecting con�guration x is

�
x� �
expf�JH
x��
kT �g�P

v Bvx
v�

ZT
�

Here J is either � 
for ferromagnetism� or �� 
for antiferromagnetism�� B is a pa�

rameter that measures the external magnetic �eld� k is Boltzman�s constant� T is

the temperature of the model� and ZT is the value which makes � a probability

distribution� i�e�� the normalizing constant� Often� ZT is referred to as the partition

function�

It will be helpful to gain some intuition about how the parameters interact�

Suppose we are dealing with the ferromagnetic Ising model 
J � ��� Note that

�H
x� is large when the values of x
i� and x
j� for an edge 
i� j� are the same�

Hence a con�guration where the endpoints of edges receive the same color is more

likely than a con�guration where they are di�erent� Physically� this means that the

spins tend to line up� making for a stronger magnet�

If J � �� 
antiferromagnetism� then the highest probability states are ones

where the endpoints of edges are colored di�erently� Here the Hamiltonian is largest

when spins do not align�

The value Bv measures the presence of an external magnetic �eld that biases

the con�guration towards either spin up or spin down at the node v� While the

techniques that we use can be modi�ed to incorporate a nonzero B� for simplicity

we will always take B to be ��

The temperature measures how free the spins are to �ght their natural ferro�
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magnetic or antiferromagnetic tendencies� When the temperature is very high� �
x�

is roughly ��ZT regardless of the value of H
x�� In this case� all the con�gurations

are equally likely� and each individual node is almost as likely to be spin up as spin

down�

When T is very small� only states with very largeH
x� have signi�cant probabil�

ity of occurring� For instance� in the ferromagnetic state with high probability most

of the states will be pointing in the same direction� This means that the state tends

to exhibit long range behavior� where the spin of two nodes on the opposite sides of

the graph are highly correlated� The distribution � changes smoothly with T � and

so there is a point where these long range correlations start to appear� Roughly

speaking� this is the idea behind phase transitions�

Technically� phase transitions involve discontinuities in properties of the graph�

and so truly only occur in graphs with an in�nite number of nodes� However� even

for relatively modest size graphs� the presence of a phase transition will result in

large changes in the properties of a graph with small changes in a parameter such as

T � One of the reasons for the primacy of the Ising model in statistical simulations

is the fact that this simple model exhibits a phase transition for graphs such as

the � dimensional lattice� Phase transitions are of course prevalent throughout the

physical world� for instance� the process of ice turning to water is a phase transition�

The constant k is Bolzmann�s constant� and arises out of the statistical me�

chanical justi�cation for the Hamiltonian in the Ising model� Note that x is a two

coloring� and therefore de�nes a cut of the graph� Let C
x� denote the number of

edges which cross the cut 
this is the unweighted value of the cut�� Then as we have
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de�ned it� H
x� � �C
x��m� where m is the number of edges in our graph� The

exp
m�
kT �� term in the exponential is a constant� so we may introduce a scaled

temperature T � such that

� �
expf�JC
x��T �g

Z �
T

�

����� The antiferromagnetic Ising model and MAX CUT

There exists a very close relation between the antiferromagnetic Ising model and the

problem MAX CUT� which is the problem of �nding the largest cut in an arbitrary

graph� This problem is known to be NP�complete� so if this problem could be solved

in polynomial time� then every problem in NP could be solved in polynomial time�

This makes it quite unlikely that an e�cient solution to this problem will be found�

The probability of generating a particular cut from the antiferromagnetic Ising

model will be expfC
x��Tg�ZT � When T � ln��n� �
x� � 
�n�C�x��ZT � Let the

con�guration xmax be the coloring associated with the maximum cut in the graph�

There are only �n � � other colorings of the graph� hence the total weight of cuts

which are of smaller size than the maximum is at most

�n � 
�n�C
xmax�� ��ZT � 
�n�C
xmax��ZT � �
xmax��

Hence with probability � �� a random sample drawn from this distribution will �nd

the maximum cut in the graph� In fact� when the graph is regular 
all degrees of

the graph are the same� we may do much better�

Let ! denote the degree of each node in the graph� We shall show that when

T � O
��!�� an algorithm for sampling from the Ising model leads to a constant
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factor approximation algorithm for MAX CUT�

De
nition ��� Given a maximization problem with optimal value OPT� and a poly�

nomial time algorithm which produces solutions with value ALG� we say that it is

a ��approximation algorithm if ALG�OPT � �� Similarly� if OPT is the opti�

mal solution for a minimization problem� we have a ��approximation algorithm if

ALG�OPT � ��

Theorem ��� Suppose that we have a graph of bounded degree ! and an e�cient

means for sampling from the Ising model on arbitrary graphs of maximum degree !

for some temperature T � Let � � �� 
T ln �
�

� Then if � � �� we have a randomized

��approximation algorithm for MAX CUT�

Proof� Let A
�� denote the set of con�gurations x such that C
x� � �C
xmax��

Then

�
A� �
X
x�A

expfC
x��Tg
ZT

� X
x�A

expf�C
xmax��Tg
ZT

� �
xmax�jAje������C�xmax��T

� �
xmax�e
n ln �������C�xmax��T

In order to have �
xmax� � �
A�� we need n ln � � 
� � ��C
xmax��T � �� or

T � 
�� ��C
xmax��
n ln ���
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Since there are n!�� edges� we know that a maximum cut contains at least

n!�� edges� Therefore� if

T � 
�� ��n!

�n ln �
�


�� ��!

� ln �
�

then we have a randomized ��approximation to MAX CUT�

It turns out that 
even for bounded degree graphs� solving MAX CUT is not only

NP�complete� but APX�complete� Loosely speaking� APX is the set of optimization

problems such that there exists a bound �� such that if a better than ��approximation

algorithm exists� then P � NP� For us this means 
that unless RP � NP�� there

exists a constant  such that no polynomial time algorithm exists for sampling

from the Ising model when T 
 !� It is not surprising� then� that in chapter � we

shall analyze an algorithm of H"aggstr"om and Nelander ��� and show that it runs

in polynomial time when T � ���!�

This all indicates the di�culty of even sampling from the antiferromagnetic Ising

model� The ferromagnetic Ising model is a di�erent story� and in fact a polynomial

time algorithm exists ��� ���� that generates samples drawn approximately from

the distribution of the Ising model for arbitrary graphs�

��� The Potts Model

In the Ising model we had spin up and spin down� but we live in a three dimensional

world� It is easy to consider a model with spin up� down� right� left� into the plane

and out of the plane� In general� instead of using two colors we now use Q colors�
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This is the Potts model� and it is an important generalization of the Ising model �����

Let x be a coloring of the nodes using colors from C � f�� �� � � � � Q� �g� Then
C
x� now refers to the number of edges which cross the Q way cut determined by

x� As in the Ising model� we let

�
x� �
expf�JC
x��Tg

ZT
�

where J � � for ferromagnetism and J � �� for antiferromagnetism�

As with the Ising model� the antiferromagnetic Potts model is NP di�cult to

sample from at arbitrary temperatures� with the reduction being to MAX Q CUT�

Unlike the Ising case� however� no method for sampling from the ferromagnetic

Potts model is known to run quickly at all temperatures� We will give a partial

answer to this question by analyzing two chains for the Potts model� single site

update and Swendsen�Wang�

��� The hard core gas model

In the hard core gas model� we again two color a graph� However� here coloring

a node � means that a gas molecule occupies that node� while the color � means

that it is empty� These molecules take up a �xed amount of space� the core of the

molecule� These cores are �hard	 and so are not allowed to intersect� In our model�

this means that no two adjacent nodes contain gas molecules� One way to enforce

this condition mathematically given a coloring x is to require that x
i�x
j� � � for

all edges 
i� j�� Let n
x� �
P

v x
v�� If we think of the con�guration x as de�ning

the locations of a set of gas molecules� then n
x� represents the number of molecules
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in the con�guration� The distribution over this con�gurations is

�
x� �
�n�x�

Z�
�

where � is a parameter known as the activity or fugacity�

This type of set� where no two nodes which are adjacent are both in the set�

is known as an independent set� Just as the Ising model is a close relative of

MAX CUT� the hard core gas model is closely linked to the problem of �nding the

maximum independent set of a graph� which is an NP�complete problem� When

� � n� then with probability at least ��n the largest independent set in the graph

is chosen� In fact� Dyer Frieze� and Jerrum showed ���� by reduction to a di�erent

NP �complete problem that it there does not exist an e�cient means for sampling

from this distribution when � � � and ! � �� unless RP � NP � even when the

graph is restricted to be bipartite�

��� The Widom�Rowlinson mixture model

Related to the hard core gas model is the Widom�Rowlinson mixture model �����

In this section we consider a discrete version of the model ����� Suppose we have

Q di�erent types of substances in a mixture� Particles of substance i are allowed

to be close to one another� However� two adjacent sites cannot be occupied by two

di�erent substances� Mathematically� C � f�� �� � � � � Qg� with the color � indicating

that a site is empty and color i indicating that a particle of substance i occupies

the site� We require that for all edges 
i� j� of the graph� either X
i� � X
j� or

X
i�X
j� � ��
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H"aggstr"om and Nelander ���� gave an perfect sampling algorithm for this discrete

model when Q � �� Later we will present an improved algorithm for which sharper

running time bounds may be shown� In addition� in chapter � we will construct an

perfect sampling algorithm for the continuous case as well�

��� Q colorings of a graph

As the temperature T drops in the antiferromagnetic Potts model� more weight is

given to those states where the size of the cut is the entire graph� In other words�

the highest weight is given to colorings where the endpoints of an edge have di�erent

colors�

De
nition ��� A Q coloring of the nodes of a graph is proper if the endpoints of

each edge in the graph have di�erent colors�

One way of de�ning the distribution when T � � is to give equal weight to a proper

Q coloring of the graph� and � weight if the endpoints of an edge are given the same

color�

Jerrum ���� constructed a Markov chain for sampling uniformly from the color�

ings of a graph when Q � �!� It is NP �hard to determine if there is a coloring

when Q � !� and for Q � !�� the chain of Jerrum is not connected� However� for

!� � 
 Q 
 �! very little is known about the behavior of the chain� In chapter �

we give an perfect sampling algorithm for this problem 
also independently given

in ������
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This problem of sampling from the Q colorings of a graph also provides an easy

illustration for how a random sampling algorithm can be turned into an approximate

counting algorithm� The problem of counting the number ofQ colorings of a graph is

a �P �complete problem� Suppose that k � �!� so we know from Jerrum�s work that

we have an approximate sampling algorithm� The work in ���� gives an algorithm

for creating an perfect sampling algorithm that runs in O
mTRS� time� where TRS

is the time needed to take a random sample� We present here an algorithm that

runs in O
nTRS� time�

��� Sink Free Orientations of a graph

Given an undirected graph� a sink free orientation is an assignment of directions to

edges such that no edge has outdegree �� The problem of computing the number of

sink free orientations of a graph is �P �hard ���� and is also a special case of evaluating

the Tutte polynomial of a graph� making this problem of theoretical interest� As

with the other problems we consider� this one may be formulated as a coloring�

Suppose that we have an edge e � fi� jg where i 
 j� Then if we have in our

coloring x
e� � �� the edge is oriented 
i� j�� but if x
e� � �� the edge is oriented


j� i�� To be sink free� we require that
P

j	i
�x
fi� jg�����
P

j�i
x
fi� jg���� � �

for all nodes i�
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��	 Hypercube slices

A hypercube may be thought of as having state space f�� �gn where n is the dimen�

sion of the cube� Edges exist between any two points in the state which di�er by

at most one coordinate 
so that changes only occur parallel to the coordinate axis��

Each possible state is considered equally likely�

If the k colorings of a graph may be considered the zero temperature limit of the

Potts model� then the hypercube chain may be thought of as the in�nite temperature

limit� Here each possible con�guration is equally likely� and the coloring of a site


coordinate� is completely independent of the other coordinates�

A restriction of the hypercube is used to study instances where we wish the

magnetization is the Ising model to remain constant ����� Recall that for the Ising

model� the magnetization is the number of nodes colored �� In the hypercube slice

model� we restrict the set of allowable con�guration� Let L and U be integers with

L � U � Then the state space of the hypercube slice model is those points in f�� �gn

satisfying L � P
i x
i� � U � If L is close to U � then the magnetization will be

roughly constant�

��
 Applying the Monte Carlo method

All the models discussed above are probability distributions� and the question of

interest is how to sample e�ciently from these distributions� For decades� construc�

tion of Markov chains has been possible for these problems and others by using

some basic techniques� We next explore the most successful of these techniques�



Chapter �

Building Markov chains

On two occasions I have been asked �by members of Parliament�� #Pray�

Mr� Babbage� if you put into the machine wrong �gures� will the right

answers come out�� I am not able rightly to apprehend the kind of

confusion of ideas that could provoke such a question�

�Charles Babbage

Perhaps the earliest Monte Carlo algorithm 
outside of astrology� is a method

for �nding the value of the numerical constant � dating back to the �����s� This

method involved �ipping a toothpick onto ruled paper and measuring the number

of times the toothpick crossed the lines� and was used by some to while away the

time ���� Even at that time� far better methods existed for approximating �� as this

method is agonizingly slow�

With a computer� pseudorandom numbers can be generated by the millions�

and used to drive a Markov chain towards its stationary distribution� As Babbage

��



�

notes� however� the �right �gures	 must �rst be put into the machine� In our case�

that means that we must be able to construct a Markov chain whose stationary

distribution is the same as the distribution given by our probabilistic models�

Broadly� these chains fall into two classes� local update chains and nonlocal

update chains� Recall that for all of our problems� � � CV consists of the colorings

of a graph� Local update algorithms take advantage of this structure by updating

the colors on only one or two nodes at a time� Nonlocal update algorithms are often

far less intuitive than their local counterparts� but many times can avoid regions

where local chains are not rapidly mixing by changing the color of many nodes

simultaneously�

��� Conditioning chains

The reason why we cannot sample directly from these distributions � is that they

are de�ned as �
x� � w
x��Z where w
x� is an easily computable weight function�

and Z is an unknown normalizing constant that is often very di�cult to compute�

Conditioning will allow us to eliminate the need to know Z when taking a step�

As an example� consider the hard core gas model� where the desired distribution

is �
x� � �n�x��Z�� Here the weight function is trivial to compute� but �nding Z� is

�P hard ����� Suppose that someone else has generated a random sample and sent

it to us� however� the color at node v is missing� All of the other color data came

through just �ne� We now seek to create a new random sample from � conditioned

on the values of the colors at all nodes other than node v�
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If one of the neighbors of v is colored � 
that is� included in the independent

set�� then we did not need the missing data since v must be colored �� However�

if all the neighbors of v are colored �� then two con�gurations are possible� We

wish to choose random X
v� given X
V n fvg�� Note that n
X� when X
v� � � is

exactly � more than n
X� when X
v� � �� Let x� denote the con�guration where

v is colored � and x� denote the con�guration where v is colored �� Then

P �X � x�jX
V n fvg� � x
V n fvg�� �
P 
X � x��

P 
X
V n fvg��
�

P 
X � x��

P 
X � x�� � P 
X � x��

�
�n�x���Z

�n�x���Z � �n�x���Z

�
�

�� �

Similarly� it is easy to show that

P 
X � x�jX
V n fvg� � �

�� �
�

A wonderful thing has occurred� in that Z� was canceled out in the computation�

This is not an accident� but a general feature of conditioning arguments�

More generally� suppose that we know the value of a con�guration on all but

a small set of nodes VU 
here the U in the subscript stands for unknown�� Then

x
VU� is the coloring of VU � and x
V n VU� is the coloring on the remaining nodes�

so that 
x
VU�� x
V n VU�� describes a complete con�guration on V � Given part of

a con�guration x
V n VU�� we can randomly extend it to a complete con�guration

by using
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P �X
V � � x
V �jX
V n VU� � x
V n VU�� �
w

x
VU�� x
V n VU����Z
P 
X
V n VU � x
V n VU���

�
w

x
VU�� x
V n VU���P

x�VU � w

x
VU�� x
V n VU��� �

�
w

x
VU�� x
V n VU����ZP

x�VU � w

x
VU�� x
V n VU����Z �

�
w

x
VU�� x
V n VU���P

x�VU � w

x
VU�� x
V n VU��� �

Again� the normalizing constant Z has dropped completely out of the picture� The

general conditioning chain� then� picks some subset of nodes at random� discards

their value� and then replaces the colors on the subset by randomly extending the

remaining coloring�

����� The Heat Bath chain

The heat bath chain is a special case of conditioning chains where the probability

distribution on VU does not depend upon the current state of the chain� It works

like this� A set VU is chosen at random and the colors on those nodes are discarded�

The colors are then replaced randomly by choosing colors for VU from � conditioned

on the values of the colors at all of the other nodes� At every step we use the same

distribution on subsets of V for choosing our random VU � Often VU is a randomly

chosen dimension node of the state space�

To describe choosing random numbers� we use a �U A to denote the act of

choosing an element of A uniformly from that set� We will use a �R A to denote
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choosing a from A at random according to an arbitrary distribution� Because we

are choosing VU and only updating that portion� often the value of x
V n VU� is

clear from context� Therefore� for notational convenience� we will use w
x
VU�� to

denote w

x
VU�� x
V n VU����

The general heat bath Markov chain

Input
 Xt � CV

w a weight function on � � CV

p a distribution on subsets of V

Set X � Xt

Choose VU �R �V according to distribution p
Choose X
VU� �R CVU according to

P 
X
VU� � x
VU�� �
w�x�VU ���P

x��VU �
w�x��VU ��

Set Xt�� � X

Figure ���� The general heat bath Markov chain

Reversibility allows us to show that this chain has the desired stationary distri�

bution � � w�Z� Two states x� and x� are connected if their colors di�er on a set

vU which has positive probability of being selected 
p
vU� � ��� There can be more

than one set vU for which this is true� Let VU denote the set of subsets of V that

contain all the nodes on which x� and x� have di�erent colors� We now show that

the heat bath chain is reversible� Let x� 	 x� denote the event that con�guration

moves from state x� to x� at one step of the Markov chain�

�
x��P 
x� 	 x�� � �
x��
X
vU

p
vU�P 
x� 	 x�jVU � vU�

�
w
x��

Z

X
vU

p
vU�P 
x� 	 x�jVU � vU�
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Single site hard core heat bath chain

Set X � Xt

Choose a vertex v uniformly at random from V
Choose U uniformly from ��� ��
If U � �

���
or a neighbor of v is colored �

Set X
v� � �
Else
Set X
v� � �
Set Xt�� � X

Figure ���� Single site hard core heat bath chain

�
w
x��

Z

X
vU�VU

p
vU�
w
x��P

x�x�V nVU � � x�
V n VU�w
x�

�
w
x��

Z

X
vU�VU

p
vU�
w
x��P

x�x�V nVU � � x�
V n VU�w
x�

�
w
x��

Z

X
vU

p
vU�P 
x� 	 x�jVU � vU�

� �
x��P 
x�� x��

In the single site update algorithm for the hard core gas model� VU is chosen to

be a single vertex v with probability ��n� The probability of setting X
v� � � and

X
v� � � are exactly those computed in the previous section� so we know that this

chain has the correct distribution�

Suppose that the graph is bipartite with V � VL 
 VR� where each edge has an

endpoint in each of VL and VR� Then the neighbors of any node in VL lie only in

VR� and neighbors of VR all lie in VL� This allows us to switch all of the values of

VL or VR simultaneously� This is de�nitely nonlocal� since the average number of
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Nonlocal hard core heat bath chain

Set X � Xt

Choose VU to be VL or VR each with probability � �
For each vertex v in VU
Choose U uniformly from ��� ��
If U � �

���
or a neighbor of v is colored �

Set X
v�� �
Else
Set X
v�� �

Set Xt�� � X

Figure ���� Nonlocal hard core heat bath chain

nodes which can be a�ected in a move is n���

��� Metropolis�Hastings

Metropolis�Hastings chains ���� take a rate approach rather than a conditioning

approach� This approach works best when all of the possible colorings for VU are

roughly equal in value�

In the heat bath chain� we chose VU � threw away the colors on those nodes�

and then replaced them according to the conditional probability� In a Metropolis�

Hastings type algorithm� we attempt to change the values on VU and sometimes

reject the change if it would lead to a state with lower weight�

Again reversibility is used to show that this chain has the desired stationary

distribution� As before� suppose that x� and x� are two states with positive weight

where the set of subsets VU containing all nodes with di�erent colors has positive
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The general Metropolis�Hastings Markov chain

Input
 Xt � CV

w a weight function on � � CV

p a distribution on subsets of V

Set X � Xt

Choose VU at random according to p
Choose x
VU� uniformly at random from CVU

If w

x
VU�� X
V n VU�� � w
X�
Set X
VU�� x
VU�
Else
Choose U uniformly at random from ��� ��

If U � w�x�VU ��
w�X�

Set X
VU�� x
VU�
Set Xt�� � X

Figure ���� The general Metropolis�Hastings Markov chain

weight in p� Then without loss of generality� let w
x�� � w
x���

�
x��P 
x� 	 x�� � �
x��
X

vU�VU

p
vU�P 
x� 	 x�jVU � vU�

�
w
x��

Z

X
vU

p
vU�
�

jCjjvU j

and

�
x��P 
x� 	 x�� � �
x��
X
vU

p
vU�P 
x� 	 x�jVU � vU�

�
w
x��

Z

X
vU

p
vU�
w
x���w
x��

jCjjvU j

�
w
x��

Z

X
vU

p
vU�
�

jCjjvU j
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so they are equal and the Metropolis�Hastings chain is reversible with the correct

distribution�

Applying this to the speci�c example of the hard core gas model� we have the

following� When the color chosen for v is � and no neighbors have color � already�

Single site hard core Metropolis�Hastings chain

Set X � Xt

Choose a vertex v uniformly at random from V
Choose c uniformly from f�� �g
If c � � and v has no neighbors colored �
Set X
v�� c
Else
Choose U uniformly at random from ��� ��
If U � �

�

Set X
v�� c
Set Xt�� � X

Figure ���� Single site hard core Metropolis�Hastings chain

then setting v to � raises the weight of the con�guration� so we always proceed�

If� however� the color chosen for v is � then the weight might drop from �n�x� to

�n�x���� The smaller over the larger of these weights is ���� so with this probability

we switch a � to ��

As with the heat bath� when the graph is bipartite these ideas may be used to

construct a nonlocal algorithm as well�
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��� The acceptance rejection heat bath chain

An idea which will come in handy later in a particular implementation of the heat

bath chain we will call the acceptance rejection heat bath chain� The transition

probabilities are exactly the same as for the heat bath chain� the di�erence lies in

how a generate a Markov chain step� In words� what we do is having selected the

The general acceptance rejection heat bath Markov chain

Input
 Xt � CV

w a weight function on � � CV

p a distribution on subsets of V

Set X � Xt

Choose VU �R �V according to distribution p
Set M � maxfw
x
VU��g
Repeat
Choose X
VU� �U CVU

Choose W �U ��� ��

Until W � w�x�VU ��
M

Set Xt�� � X

Figure ���� The general acceptance rejection heat bath Markov chain

portion of the chain to change� we then select a coloring for that portion uniformly

at random� We then test a uniform against the weight of that coloring 
normalized

against M � an upper bound on the weight�� If the test accepts� we accept the value�

and if it rejects� we choose another coloring and try again�

Although the form is similar� this chain is not the Metropolis�Hastings chain$

It is simply another formulation of the heat bath chain� as shown by the following

theorem� This theorem is not new� and is a staple of courses in stochastic processes�
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Theorem ��� The probability that the node set VU is given coloring x
VU� by the

acceptance rejection heat bath chain is

P 
X
VU� � x
VU�� �
w
x
VU��P

x��VU �w
x
�
VU���

Proof� We do a �rst step analysis� computing the probability that X
VU� � x
VU�

and we rejected the color chosen in the �rst step plus the probability that X
VU� �

x
VU� and we accept the color in the �rst step� Let ACCEPT denote the event that

we accept the �rst step� and REJECT denote the event that we reject the �rst step�

P 
X
VU� � x
VU �� � P 
X
VU� � x
VU��ACCEPT�

�P 
X
VU� � x
VU ��REJECT�

�
�

Q
� w
x
VU��

M

�P 
X
VU� � x
VU �jREJECT�P 
REJECT�

When the �rst step rejects� we start over� so

P 
X
VU� � x
VU�jREJECT� � P 
X
VU� � xU ��

and

P 
X
VU� � x
VU �� �
�

Q
� w
x
VU��

M

�P 
X
VU� � x
VU��P 
REJECT�

P 
X
VU� � x
VU����� P 
REJECT�� �
�

Q
� w
x
VU��

M

P 
X
VU� � x
VU �� �
�

P 
ACCEPT�
� �
Q
� w
x
VU��

M



�

�
�

�
Q

P
x��VU � w
x

�
VU���M

�

Q
� w
x
VU��

M

�
w
x
VU��P

x��VU �w
x
�
VU��

which completes the proof� �

As an example� we now present the single site heat bath chain for the hard core

gas model as an acceptance rejection chain 
the version here is for when � � ���

Acceptance rejection single site hard core heat bath chain

Set X � Xt

Choose a vertex v uniformly at random from V
If a neighbor of v has color �
Set X
v� � �
Else
Repeat
Choose c �U f�� �g
Choose U �U ��� ��
Until c � � or 
c � � and U � ����
Set X
v�� c
Set Xt�� � X

Figure ��� Acceptance rejection single site hard core heat bath chain

��� The Swap Move

Broder �rst introduced what we will call the �swap move	 for a chain for generating

matchings of a graph� Basically� the idea is that if the color of exactly one neighbor

prevents a chosen site from being colored according to the heat bath distribution�

then change the color of the neighbor to accommodate the color of the chosen node�
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Broder applied this move to construct a chain for sampling from the set of perfect

matchings of a graph 
used in approximating the permanent of a ��� matrix�� This

chain was later shown by Jerrum and Sinclair ��� to be rapidly mixing�

Dyer and Greenhill applied this technique to the hard core gas model� thereby

improving the ability to analyze the chain� We will apply this move to several chains�

including the continuous hard core gas model� and the discrete and continuous

Widom�Rowlinson mixture models�

Suppose we are using the single site heat bath chain for the hard core gas model�

When v has any neighbors colored �� we are unable to turn v to �� Suppose however�

that exactly one neighbor of v is colored �� with the rest colored �� Then a valid

move 
in that it stays in the state space� would be to swap the color of v with its

neighbor with some probability pswap� This chain is presented in �gure ���

Proving that this chain preserves the stationary distribution may be accom�

plished via a direct application of reversibility� The new moves are symmetric� so

that if x and y are two con�gurations reached by a swap move then

P 
x� y� � P 
y� x� � pswap
�

n
� � ��

and �
x� � �
y�� Therefore� clearly �
x�P 
x� y� � �
y�P 
y� x� and these moves are

symmetric� Since in the old chain there was no probability of moving from x to y�

adding these moves preserves the stationary distribution�

Later� we will show how this swap move improves the performance of chains for

the continuous hard core gas model and Widom�Rowlinson mixture model�
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Dyer and Greenhill hard core chain step

Set X � Xt

Choose a vertex v uniformly at random from V
Choose U uniformly from ��� ��
Case �� v has no neighbors colored � in Xt� then
If U � �

���

Set X
v�� �
Else
Set X
v�� �

Case �� v has exactly � neighbor w colored �
If U � pswap

�
���

Set X
v�� �� X
w�� �
Else
Set X
v�� �

Set Xt�� � X

Figure ���� Dyer and Greenhill hard core chain step

��� The Ising and Potts models

We present here the single site heat bath update chain for the Ising and Potts

models� The Metropolis�Hastings chain is constructed in a similar fashion�

For a vertex v� let bv
c� denote the number of neighbors of v which have color

c� 
The b stands for blocking� as these colors tend to block v from receiving color c

in antiferromagnetic models��

As with many local update chains� the fact that we are picking vertices at random

indicates that we must run for at least n lnn steps before we have any reasonable

chance of modifying all the nodes� A nice feature of this chain is that when the

temperature T is large enough� then O
n lnn� steps su�ce for this chain to mix�
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Single site Potts heat bath chain

Set x� Xt

Choose a vertex v uniformly at random from V

Choose c �R C according to exp��Jbv�c��T �P
c��C

exp��Jbv�c���T �

Set x
v�� c
Set Xt�� � X

Figure ���� Single site Potts heat bath chain

����� Antiferromagnetic Potts model at zero temperature

Recall that the problem of uniformly sampling from the Q colorings of a graph may

be thought of as the zero temperature limit of the antiferromagnetic Potts model�

The heat bath chain for this problem is straightforward� since all proper colorings

of the graph have the same weight� We begin by making our notion of blocking

more precise�

De
nition ��� A color c blocks or neighbors a node v if a node adjacent to v has

color c� A color c which is not blocking for v is nonblocking�

Single site Q coloring heat bath chain

Set x� Xt

Choose a vertex v uniformly at random from V
Choose c uniformly from the set of nonblocking colors for v
Set x
v� � c
Set Xt�� � x

Figure ����� Single site Q coloring heat bath chain
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����� Swendsen�Wang

Swendsen�Wang is a nonlocal chain for the ferromagnetic Ising and Potts models

which utilizes the random cluster viewpoint� It has the advantage of being prov�

ably faster than the single site update model under low temperature conditions�

Although this model is known not to be rapidly mixing for all temperatures ����� it

is in widespread use as a means for generating samples from the Potts model�

The Swendsen�Wang procedure has two phases� In phase �� the coloring of the

graph is used to divide the nodes� An edge is placed between two nodes if the

endpoints of those nodes receive the same color� The connected components of this

graph are connected sets of nodes of the original graph that have the same color�

Each of the edges of this graph are randomly 
and independently� removed with

probability � � p� where p � �� exp
���T � is high when the temperature is high

and close to � when the temperature is low� Once this has been accomplished� the

number of connected components will be even higher�

In phase II� the remaining connected components are each assigned a color uni�

formly and independently from C � f�� � � � � Q��g� All the nodes in that component

are assigned this color� For a subset of edges A let C
A� denote the set of connected
components of A� and let Cv denote the lowest numbered node in a connected

component� This is written algorithmically in �gure �����

Swendsen and Wang ���� both introduced this chain and showed that it has the

correct stationary distribution� We will present an analysis of the mixing time of

this chain� a result similar to that proved recently by Cooper and Frieze ����
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Swendsen�Wang Step

Set x� Xt

Let A� ffv� wg � E � x
v� � x
w�g
For each edge e � E set U
e� �U ��� ��
For each node v � V set c
v� �U f�� � � � � Q� �g
For each edge e � A
If U
e� 
 �� p
Set A� A n feg

For all C � CA
Set X
w�� c
Cv� for all w � C
Set Xt�� � x

Figure ����� Swendsen�Wang chain

��� Sink Free Orientations

As noted in the previous chapter� the problem of generating a sink free orientation

of a graph can be seen as have state space � � f��� �gE where the two colors for

each edge refers to the two possible orientations of that edge� A heat bath chain

for this problem picks an edge at random and then randomly picks an orientation

that does not create a sink�

Single edge heat bath sink free orientations chain

Set x� Xt

Choose e �U E
Choose c uniformly from the set of orientations that
do not create a sink in the graph
Set x
e�� c
Set Xt�� � x

Figure ����� Single edge heat bath sink free orientations chain
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��	 Widom�Rowlinson

We present several chains for the Widom�Rowlinson model� First we consider the lo�

cal heat bath chain of ����� then a discrete version of a nonlocal chain for continuous

Widom�Rowlinson due to H"aggstr"om� van Lieshout� and M%ller�

Recall that in the Widom�Rowlinson model nodes are either assigned a color

from f�� � � � � Qg which indicates the type of particle occupying the site� or a �

indicating that that site is unoccupied� If ci is the number of sites occupied by the

ith particle type� then the distribution is �c�� � � ��cQQ �Z�

The heat bath chain chooses a node uniformly and then changes the color of

that node conditioned on the remaining nodes�

Single site heat bath discrete Widom�Rowlinson chain

Set x� Xt

Choose v �U V
Case �� All neighbors of v are �
Choose c �R f�� � � � � Qg so that P 
c � �� � ��
� �

P
i �i�

and P 
c � i� � �i�
� �
P

i �i� for all � � i � Q
Case �� All the neighbors of v are either i or �
Choose c �R f�� � � � � Qg so that P 
c � �� � ��
� � �i�
and P 
c � i� � �i�
� � �i�

Case �� Two neighbors of v have di�erent positive colors
Set c� �
Set x
v�� c
Set Xt�� � x

Figure ����� Single site heat bath discrete Widom�Rowlinson chain

The nonlocal chain takes a more direct approach� At each stage all the points

of a chosen color are removed from the chain� Then new points of that color are
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put back in the chain according to the stationary distribution conditioned on the

positions of the remaining colors� In the next chapter we will see that these two

Nonlocal conditioning discrete Widom�Rowlinson chain

Set x� Xt

Choose i �U f�� � � � � Qg
For all v such that all neighbors of v are either � or i
Choose c �R f�� ig so that P 
c � �� � ��
� � �i�
and P 
c � i� � �i�
� � �i�
Set x
v�� c
Set Xt�� � x

Figure ����� Nonlocal conditioning discrete Widom�Rowlinson chain

chains have roughly the same performance�

A birth death type process looks at Widom�Rowlinson from a di�erent point

of view� Let xi be the set of nodes colored i in a con�guration x� Then the birth

death approach says that at each time step� a point of color i is �born	 at a speci�c

node with probability �i��n
� �
P

i �i��� A particular point �dies	 with probability

���n
� �
P

i �i��� by which we mean the point is removed from xi by setting the

color of the point to �� Algorithmically� the process is described as follows� Say

that a color i is blocked at node v if either v or a neighbor of v has a positive color

di�erent from i� Reversibility is easily seen to be satis�ed with this chain� which

has a slightly worse performance bound than the single site heat bath chain� We

introduce it here because it is easy to add a �swap	 type move which will increase

the range of �i over which we may prove that the chain is rapidly mixing�

In the vanilla birth death chain� if a color is blocked when it tries to be born� it
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Birth death discrete Widom�Rowlinson chain

Set x� Xt

Choose U �U ��� ��
Set p� � ��
� �

P
i �i�

For all � 
 i 
 Q
Set pi � �i�
� �

P
i �i�

Choose i �R f�� � � � � Qg according to p
Choose v �U V
If i � �
Set x
v�� �
Else
If color i is not blocked for node v
Set x
v� � i

Set Xt�� � x

Figure ����� Birth death discrete Widom�Rowlinson chain

simply fails to be born� If however� a point is blocked by only a single point in v and

the neighbors of v� our swap move will remove the blocking point� and introduce

our point in its place�

��
 The Antivoter model

The antivoter model is one of two models we will consider where the chain itself

is part of the model� Throughout this work� the discussions and results for the

antivoter model is joint work with Gesine Reinhert�

Naturally� the antivoter model is closely related to the voter model� Suppose

that we have C � f�� �g� At each step of the voter model� a vertex is chosen at

random� and the color of the vertex is changed to be the same as a randomly chosen
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Birth death swapping discrete Widom�Rowlinson chain

Set x� Xt

Choose U �U ��� ��
Set p� � ��
� �

P
i �i�

For all � 
 i 
 Q
Set pi � �i�
� �

P
i �i�

Choose i �R f�� �� � � � � Qg according to p
Choose v �U V
If i � �
Set x
v�� �
Else
Case �� color i is not blocked for node v
Set x
v�� i
Case �� color i blocked by exactly one node w � fv 
 neighbors of vg
If U 
 pswap
Set x
v�� i
Set x
w�� �

Set Xt�� � x

Figure ����� Birth death swapping discrete Widom�Rowlinson chain

neighbor� 
This may be used to model forest �res and the spread of infectious

agents�� This chain has two absorbing states where the colors of all of the nodes

are the same� We will call such a state unanimous�

In the antivoter model� again a vertex is chosen uniformly at random� but now

the color of the vertex is changed to the opposite of a randomly chosen neighbor�

Unlike the voter model� the antivoter model 
on graphs that are nonbipartite� state

space is connected 
except for the unanimous states� which once left are never

reached again� and has a unique stationary distribution on the states ���� However�

this chain is not reversible� Given a state where v is surrounded by nodes colored

�� then v can move to being colored �� but cannot move back to being colored ��



�

The Antivoter model chain step

Set x� Xt

Choose a vertex v uniformly at random from V
Choose a neighbor w of v uniformly at random
Set x
v�� �� x
w�
Set Xt�� � X

Figure ���� The Antivoter model chain step

Therefore P 
x� y� � � but P 
y� x� � � for some x and y� and the chain cannot be

reversible� This is the only chain we will consider in this dissertation which is not

reversible�

��� The List Update Problem

The list update problem is the second problem we will consider where the chain

itself is part of the problem� Throughout this work� the discussions and results for

the list update problem is joint work with James Fill�

Suppose that we have a list of n items arranged in order �
��� �
��� � � � � �
n� 
in

other words� � is a permutation�� Requests come in for items� which must be served

by starting at the beginning of the list and moving inwards until the item is found�

Therefore it takes �
i� time to locate item i�

When an item is found� we are allowed to bring it forward� that is� move it to

any position in the list prior to �
i� without cost� In addition� we may transpose

any two adjacent items in the list at cost ��

Given this situation� there are several strategies one might consider for rear�
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ranging the items based upon requests� For instance� in the move to front 
MTF�

method� when an item is selected it is moved to the front of the list� Sleator and

Tarjan ��� showed that no matter what the sequence of requests� this protocol is

worse than the optimal solution where all requests are known ahead of time by at

most a factor of ��

This is a worst case analysis of the problem� Another approach is to use average

case analysis� where the set of requests is a stochastic process� and the goal is to

�nd the procedure which minimizes the expected costs of serving the process�

Consider the move ahead one 
MA�� protocol� In this method� instead of the

selected item moving to the front� it is instead placed ahead � position� Unlike

the MTF method� this method has no nontrivial guarantee on the value of the

solution it delivers� Suppose the list is ordered �� �� � � � � n� and the set of requests

is n� n� �� n� n� �� � � �� Then the MA� chain will always require n time to service

a request� when the optimal 
o�ine� solution is to move n� � to the �rst position

and n to the second and hold them there� resulting in an average cost per query of

� ��

The worst case for MA� is horribly bad� but does the average case do better�

First� we must de�ne what we mean by an �average input	� This is most often done

for the list update problem by considering the input as a stream of independently

identically distributed requests� The probability of requesting i at each step is pi�

With this random set of requests� the list becomes a Markov chain� with random

requests altering the chain based on whether we use MTF� MA�� or some other rule�
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MA� list update chain

Choose i �R f�� � � � ng where probability of choosing i is pi
If �
i� � �
Let a� �
i�
Let j be the item such that �
j� � �
i�� �
Swap i and j 
set �
j�� a� �
i�� a� ��

Figure ����� MA� list update chain

MTF list update chain

Request i �R f�� � � � � ng with the probability of choosing i is pi
If �
i� � �
Let a� �
i�
For all j such that �
j� � a
Set �
j�� �
j� � �
Set �
i� � �

Figure ����� MTF list update chain

To compare the asymptotic behavior of these chains� we compute the stationary

distribution of the lists given the input distribution� The asymptotic cost is the ex�

pected cost of accessing an item from a stationary permutation� Rivest ���� showed

that under this scheme� the MA� chain has lower expected cost at stationarity than

the MTF method� Of course� the best ordering under this probability distribution

is �� �� �� � � � � n if p� � p� � � � � � n� However� we assume that we do not have

knowledge of the pi� and we only see the set of random requests�

We will use reversibility to derive the stationary distribution of the MA� chain�

For the MA� list update chain� consider the distribution

�MA�
�� � p
n�
���
� p

n�
���
� � � � pn�
�n�n �Z�
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Say that the edge connecting the permutations � and � works by switching adjacent

items i and j�

�MA�
��P 
�� �� �
p
n�
���
� p

n�
���
� � � � pn�
�n�n

Z
pi

�

�Q
k �i�k �j p

n�
�k�
k

�
p
n�
�i�
i p

n��
�i����
j pi

Z

�

�Q
k �i�k �j p

n�
�k�
k

�
p
n��
�i����
i p

n�
�i�
j pj

Z

� �MA�
��P 
�� ��

Therefore �MA� is reversible with respect to the MA� chain� Moreover� this chain is

easily shown to be ergodic� so as our notation suggests� �MA� is the unique stationary

distribution of the MA� chain�

The MTF chain is not reversible� since if an item moves from the back to the

front� there is no corresponding reverse move which places it in the back again�

However� it is easy to see what the probability is that when � is stationarity �
i� 


�
j�� Consider the process � � � � ��� � � � which is stationary� With probability ��

sometime before time � either i or j was selected� Then ��
i� 
 ��
j� if at the last

choice of i or j� i was selected� Similarly� if j was selected at the last choice of j or

i� then ��
j� 
 ��
i�� Therefore� conditioned on the fact that the last choice was

either i or j� the probability that i was chosen is just

P 
��
i� 
 ��
j�� �
pi

pi � pj
�

Now suppose that we wish to compute the expected time needed to access an

item of ��� The time needed to access an item is � plus the number of items which
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proceed it� so

E�access i� � � �
X
j �i

E��
��j�	
��i��

� � �
X
j �i

P 
��
j� 
 ��
i��

� � �
X
j �i

pj
pi � pj

Each item i is chosen to be accessed with probability pi� therefore

E�access� �
X
i

pi

�
�� �X

j �i

pj
pi � pj

�
	

� � � �
X

��j�i�n

pjpi
pi � pj

a result shown in ����� ����� ��� and �����

Now lets upper bound P 
��
i� 
 ��
j�� for the MA� chain� Suppose that we

know the positions of all items other than i or j� Denote the smaller of the two

remaining positions a� and the larger b� Then there are two possibilities left for i

and j� one with i at position a and j at position b� with relative weight pn�ai pn�bj �

The other possibility is that j is at position a and i is at position j� with relative

weight pbip
a
j � Therefore� the probability that i 
 j given the position of all items

other than i or j is

pn�ai pn�bj

pn�bi pn�aj � pn�ai pn�bj

�
pb�ai p�j

p�i p
b�a
j � pb�ai p�j

�

Now b � a � �� so this probability is at most pi�
pj � pi�� In fact� many states of

positive weight of b � a � �� in which case the probability that i comes before j

is higher� at least p�i �
p
�
j � p�i �� 
Note this second expression may be rewritten as
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pi��pj
pj�pi� � pi��� The pj�pi term in the denominator is less than �� and so this

second fraction is greater than pi�
pj � pi��

Hence the sum over j not equal to i of E��
��j�	
��i�� is lower for the MA� chain

than for the MTF chain� and asymptotically it is guaranteed to perform faster�

Two questions remain� First� asymptotic e�ciency is useless if the chain takes

too long to converge to its stationary distribution� Actually� we do not need to

measure mixing time here� but we do need some way of measuring how quickly the

average access time converges to the stationary average access time�

Adjacent transposition for MA� distribution chain

Set x� Xt

Choose v �U f�� �� � � � � ng
Set i� x
v�
Set j � x
v � ��
Choose U �U ��� ��
If U � pi�
pi � pj�
Set x
v�� j
Set x
v � ��� i
Set Xt�� � x

Figure ����� Adjacent transposition for MA� distribution chain

Second� this analysis shows that the average asymptotic access time of the MA�

chain is lower than that of MTF chain� but it does not tell what that asymptotic

e�ciency is� Moreover� for either chain to mix� the second to lowest probability item

must be selected 
otherwise it may lie past the lowest probability item&a situation

with low probability�� But this second lowest weight can be made arbitrarily small�

making the mixing time arbitrarily large� To simulate from the asymptotic distri�
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bution of the MA� chain requires extra subsidiary chains with di�erent transitions

but the same distribution as the MA� chain�

Arbitrary transposition for MA� distribution chain

Set x� Xt

Choose w� �U f�� �� � � � � ng
Choose w� �U f�� �� � � � � ng n fv�g
Set v� � minfw�� w�g
Set v� � maxfw�� w�g
Set i� x
v��
Set j � x
v��
Set d� jv� � v�j
Choose U �U ��� ��
If U � pdi �
p

d
i � pdj �

Set x
v��� j
Set x
v��� i
Set Xt�� � x

Figure ����� Arbitrary transposition for MA� distribution chain

For example� the adjacent tranposition chain does not request a speci�c item� but

randomly chooses a position� then swaps the position and the position immediately

preceding it according to the stationary distribution� Of course� there is no reason

why we must use adjacent transpositions� Arbitrary transpositions work just as

well�

Note that the average value of d chosen in this fashion is O
n�� For weights

which are di�erent from one another by a factor of more than 
�� c�n�� this means

that the chance that the lowest weight item is placed �rst is on the order of e�c�
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���� Hypercube slices

The heat bath chain for the hypercube is simple� choose a coordinate of the chain

uniformly at random� and then change that coordinate 
again uniformly at random�

to either � or �� When we are restricted to L � P
i x
i� � U � we must modify the

heat bath chain to take this into account� When a switch would have the value of

P
i x
i� moving below L� we simply hold at the current value rather than making the

switch� Similarly for when we hit U � This chain is of interest primarily because of

Heat bath hypercube slice chain

Set x� Xt

Choose i �R f�� � � � � ng
Choose c �R f�� �g
If L � c�

P
j �i x
j� � U

Set x
i�� c
Set Xt�� � x

Figure ����� Heat bath hypercube slice chain

its relationship to algorithms for the Ising model when the magnetization is required

to be constant 
see ���� for details��

���� What remains mixing time

Creating Markov chains is easy� but showing that the chains in this section mix in

a reasonable amount of time is not� In the next chapter we introduce the idea of

bounding chains for computing the mixing time� and we present bounding chains

for each of the chains considered here�



Chapter �

Bounding Chains

The wolf Fenris ��� broke the strongest fetters as if they were made of

cobwebs� Finally ��� the mountain spirits �� made for them the chain

called Gleipnir ��� when the gods asked the wolf to su�er himself to be

bound with it ��� he suspected their design� fearing enchantment� He

therefore only consented to be bound with it upon condition that one of

the gods put his hand in his mouth� Tyr alone has courage enough to

do this� But when the wolf found that he could not break his fetters ���

he bit o� Tyr�s hand� and he has ever since remained one�handed�

�Norse Myth� Bull	nchs Mythology

Fortunately the modern practitioner of bounding chain techniques does not need

to make quite as large a sacri�ce as Tyr� but a constant factor loss of speed is

sometimes involved� In this chapter we describe the purpose and power of the

bounding chain technique�

��
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To accurately describe why bounding chains are important� we �rst take a look

at how Markov chains are actually simulated� Usually� random numbers are drawn

which determine a function� This function is then applied to the current state to

determine the next state of the chain�

De
nition ��� Let f be a random function from � into itself� We say that f is

consistent with a Markov chain with transition matrix P if P 
f
x� � y� � P 
x� y�

for all x� y�

Recall the Dyer�Greenhill chain for the hard core gas model of the previous

chapter 
Figure ����� Once the random node v is decided along with the uniform

random variable U � we have completely chosen the function f for that time step�

No matter what the state� knowing v and U allows to determine the next state of

the chain�

One method� then of simulating a Markov chain is for each time t� choose a

random function ft 
independent of all other ft�� and set Xt�� � ft
Xt�� Since

each ft is independent� this clearly has the Markov property� In general� we do not

require that each ft be identically distributed' all that is needed is that they are

consistent with the Markov chain� However� in this work all of the chains which we

consider can be simulated using functions ft which are independent and identically

distributed� If X� � x� then Xt � ft��
ft��
� � � f�
x� � � ���� As shorthand� set

F a
b � fa � fa�� � � � � � fb�� so that Xt � F �

t �

Suppose that we choose two starting values for the chain X� and Y� and set

Xt � F �
t 
X�� and Yt � F �

t 
Y��� Then if Xt � Yt for some value of t� then X �
t � Y �

t
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for all t� � t� This motivates the following de�nition�

De
nition ��� Suppose that a Markov chain is de	ned via a random sequence of

functions � � � � f��� f�� f�� � � � consistent with a transition matrix P � We refer to such

a chain as a complete coupling chain� If F a
t 
Xa� � F a

t 
Ya�� we say that the stochastic

processes X and Y have coupled at time t� and denote the 	rst time this occurs by

TC� If F
a
t is a constant function� then we say that the chain has completely coupled

at time t� and we denote the 	rst time this occurs by TCC�

The notion of complete coupling will be of paramount importance to us� It will

not only allow for computer experiments and analytical arguments that determine

upper bounds on the mixing time of a Markov chain� but also give perfect sampling

algorithms� The perfect sampling aspects of complete coupling will be explored

in Chapters � and � Here we concentrate on the experimental and analytical

determination of mixing times�

The following theorem is an important tool in determining the mixing time of a

Markov chain�

Theorem ��� Suppose that we have a completely coupling chain� X� has some

arbitrary distribution over � and Y� has a stationary distribution �� Then

jjF �
t 
X��� �jjTV � P 
Xt � Yt� � P 
TC � t��

That is� the total variation distance between Xt and the stationary distribution is

bounded above by the probability that the X and Y processes have coupled�

This theorem was originally proved by Doeblin ����� Aldous ��� is usually credited

with popularizing this theorem as a tool for bounding the mixing time of a Markov
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chain in the context of MCMC methods� We shall use this theorem throughout this

work� and so here we present the proof� which is straightforward�

Proof� Given that Y� has stationary distribution �� P 
Yt � A� � �
A� for all

A � �� Also� TC � t and TC � t are disjoint sets� so

jjF �
t 
X��� �jjTV � max

A��
jP 
Xt � A�� �
A�j

� max
A��

jP 
Xt � A� TC � t� � P 
Xt � A� TC � t�� P 
Yt � A�j

� max
A��

jP 
Xt � A� TC � t� � P 
Yt � A� TC � t��


P 
Yt � A� TC � t� � P 
Yt � A� TC � t�j

� max
A��

jP 
Xt � A� TC � t�� P 
Yt � A� TC � t�j

� max
A��

�maxfP 
Xt � A� TC � t�� P 
Yt � A� TC � t�g�

� max
A��

P 
TC � t�

� P 
TC � t��

�

Another way of stating this result is that the mixing time �TV 
	� is bounded

above by mintfP 
TC � t� � 	g� Note that TC is itself bounded above by TCC � that

is� if every process started at time � has coupled then clearly a pair of processes X

and Y have coupled no matter what distribution they have at time �� Therefore we

have proved the following corollary�

Corollary ��� Let �TV 
	� be the mixing time of the chain with respect to total

variation distance� Then if at time t� P 
TCC � t� 
 	�

�TV 
	� 
 t�
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Note that this statement does not depend at all upon the stationary distribution

of the chain� it is entirely dependent upon TCC � Therefore� if we had a method for

e�ciently determining whether or not TCC � t� then we would immediately have a

procedure for estimating the mixing time of the chain�

Experimental Upper Bounds on the Mixing Time

Input
 	

For i � � to k
Set t � �
Repeat
Set t � �t� �
Compute F �

t

Until F �
t is constant

Set ti � t
Set test to be the 	k largest value of ti

Figure ���� Experimental Upper Bounds on the Mixing Time

Johnson ���� proposed the algorithm in Figure � for a speci�c case where it is

very easy to determine if t 
 TCC � the case of monotonicity�

��� Monotonicity

A partially ordered set� or poset� consists of a base set of elements � together with

a partial order � satisfying re�exivity 
x � x�� antisymmetry 
x � y and y � x

implies x � y�� and transitivity 
x � y and y � z implies x � z�� An example of

a poset is when � is all subsets of f�� � � � � ng and x � y if and only if x � y� Note

that this particular subset has an element which is greater than all other elements�
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as well as one which is smaller than all other elements�

De
nition ��� The element (� is maximal for 
���� if for all x � �� x � (��

Similarly� (� is a minimal element of the poset if (� � x for all x � ��

In our example of the poset of all subsets of a set� (� � � is minimal and (� �

f�� � � � � ng is maximal�

Often it is possible to place a partial order on the state space of the Markov

chain such that moves on the chain respect the partial order�

De
nition ��� Suppose the functions � � � � f��� f�� f�� � � � determine a completely

coupling Markov chain� We will say that the Markov chain respects or preserves

the partial order � if for all x� y in � and all times t�

x � y � ft
x� � ft
y��

Now a simple induction argument shows that if the Markov chain respects a partial

order� that X� � Y� implies that F �
t 
X�� � F �

t 
Y��� Johnson�s approach ���� was

to use a maximal element� a minimal element� and a Markov chain which preserves

the partial order to �squeeze	 all the elements of � together�

Suppose that (� and (� are minimal and maximal elements of �� Then by de�nition

(� � x � (� for all x � �� Suppose that at time t� F t
�
(�� � F t

�
(��� Then since for all

times t� F t
�
(�� � F t

�
x� � F t
�
(��� we know that F �

t 
(�� � F �
t 
x� � F �

t 
(�� for all x � ��

In other words� F �
t is constant and TCC � t� Moreover� we know that the smallest

time (� and (� meet is in fact TCC � since complete coupling cannot occur while two

processes have not coupled�
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Example� The simplest example of a �nite monotonic chain is the random walk

on f�� � � � � ng� Suppose that we are at state i� then with probability � � the next

state is maxfi��� �g and with probability � � the next state is minfi��� ng� Then
with the partial order i � j if i � j� this Markov chain is monotonic� It has a

maximal element n and a minimal element ��

Other examples of chains which admit a monotonic partial order include the

ferromagnetic Ising model and the discrete Widom�Rowlinson model on a mixture

of two types� However� a wide variety of chains do not have a simple monotonic

structure� and so a more general version of monotonicity was developed�

��� Antimonotonicity

Kendall ���� appears to be the earliest to take advantage of antimonotonicity in

designing an exact sampling algorithm� although H"aggstr"om and Nelander ���� were

the �rst to formally de�ne the notion�

Recall that for most cases of interest� the sample space is just CV � The partial

orders for these state spaces are often constructed by putting an order � on C�

and then saying that X � Y if X
v� � Y 
v� for all v � V � For chains on these

spaces with this type of partial order� H"aggstr"om and Nelander de�ned the notion

of antimonotonicity as follows�

De
nition ��� Consider a Markov chain on � � CV � and a partial order between

con	gurations on any subset of V � The chain is antimonotonic if for all con	gura�

tions x � y and v such that ft
x�
v� � x
v�� we have that ft
x�
v� � ft
y�
v��
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Note that in monotonic cases with this type of partial order� we have that x � y

implies that ft
x�
v� � ft
y�
v�� That is why we refer to the property with the

inequality in the opposite direction as antimonotonicity�

This de�nition is usually only applicable when the number of nodes that change

color from step to step is small� such as in single node 
or edge� update chains�

When a single node changes� then all we need check is that for the node v that is

altered� x � y implies that x
v� � y
v��

We keep track of two states Tt 
for top� and Bt 
for bottom�� These states

will have the property that if Bt � Xt � Tt� then Bt�� � Xt�� � Tt��� This

looks similar to the monotonic case� but B and T do not evolve according to the

Markov chain� At time t� let T � � ft
Tt���� and B� � ft
Bt���� For all v� set

Tt�� � maxfT �
v�� B�
v�g and Bt�� � minfT �
v�� B�
v�g� Then we have guaranteed

that Bt � Xt � Tt � Bt�� � Xt�� � Tt���

The algorithm proceeds just as in the monotonic case� If we can �nd initial

states such that B� � x � T� for all x � �� then Bt � Tt implies that F �
t is constant

and we are done�


Note that the above algorithm actually works for chains which are not anti�

monotonic� such as the Luby�Vigoda chain for the hard core gas model� Since all

of these methods are speci�c cases of bounding chains� we will not explore them in

detail here��

The single site heat bath chain for the hard core model is an example of an

antimonotonic chain� Here� a single node is chosen to be changed� If the node turns

to �� then all the neighboring nodes must have been �� Thus to get high values



��


�� at a node� all the neighbors must have small values 
��� This is the essential

notion of antimonotonicity� that the particular node value will be higher if the rest

of the con�guration is smaller� where � is the measure of whether a value is higher

or smaller� Unfortunately� many chains of interest do not obey either monotonicity

nor antimonotonicity�

��� The bounding chain approach

The concept of bounding chains generalizes the idea of monotonicity and antimono�

tonicity� and is applicable to a vast number of chains� In its basic form� the idea

for discrete chains was independently introduced in ���� by the author and ���� by

H"aggstr"om and Nelander� In ����� ����� and ����� the author analyzed properties of

the bounding chain more fully� and the idea is applied to a wide variety of di�erent

problems� including continuous Markov chains�

The original idea was developed in ���� and ���� in order to develop an exact

sampling algorithm for the proper k colorings of a graph� which is neither monotonic

nor antimonotonic when k � ��

The concept is straightforward� Basically� instead of trying to show that com�

plete coupling has occurred for every node v of the graph� we work on showing that

the complete coupling has occurred for a speci�c node v� For some nodes v� com�

plete coupling will have occurred� and for some it will not� Once complete coupling

has occurred for every node v� we know that it has occurred for the entire Markov

chain�
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Given a Markov chain M� running on � � CV with transition matrix P � we

introduce a new Markov chain M� which runs on �� � P
C�V � where P
C� denotes

the set of nonempty subsets of C� Given that � is �nite� this new chain will be

�nite as well� and a con�guration on M� consists of giving each node a set of colors

drawn from C� In other words� each node of a con�guration in the chain M� has

associated with it a color set which ranges from single colors up to the entire set C�

De
nition ��� Let x � � and y � ��� Say that x � y� or x is in y if for all nodes

v� x
v� � y
v��

In order to obtain our experimental bounds on the mixing time� we need to show

that F �
t is a constant� The size of � is often exponential in the input� therefore

keeping track of 
x��F �
t 
x� is prohibitively expensive� However� keeping track of


x��F �
t 
x�
v� is much easier� That is� we keep track of the total number of possible

colors of each individual node� When j 
x�� F �
t 
x�
v�j � � for every node v� we

know that F �
t 
x� is constant over x � �� The bounding chain is the tool that makes

this approach possible�

De
nition ��� Let M� on C
V andM� on P
C�V be complete coupling chains using

the random sequences � � � � f��� f�� f�� � � � and � � � � g��� g�� g� respectively� Then we

say that M� is a bounding chain for M� if for all t�

x � y � ft
x� � gt
y��

and


�v�
jy
v�j � ��� gt
y�
v� � ft
y�
v��



��

The �rst property of bounding chains says that after one step of the chain� ifXt � Yt�

then Xt�� will be in Yt�� if the Y process is being run on a bounding chain for the

X process�

The second property says that if the bounding chain has evolved to the point

where the color set at each point is a single color� then the chain evolves exactly as

the chain that it bounds� Therefore� the set of states where jy
v�j � � for all v is

absorbing for M��

A simple induction argument extends the �rst property from single time steps

to multiple steps�

Fact ��� Suppose that M� is a bounding chain for M�� Let X be a process run on

M� and Y a process on M�� Then for all t � ��

X� � Y� � Xt � Yt�

Note that when jy
v�j � � for y � ��� we know that if x � y� then the value of

x must be the singleton element in y
v�� This leads to the following de�nition�

De
nition ��� We say that the value of node v is determined by y � �� if jy
v�j �
�� If jy
v�j � �� we say that the value of v is unknown�

Another way of stating the second property of bounding chains is that once all of

the nodes of the graph are determined� they stay determined� Once there are no

unknown nodes� no node will ever be unknown again�

The following theorem is the reason bounding chains are so useful�

Theorem ��� Suppose that M� is a bounding chain for M� and that Y�
v� � C for

all nodes v� Then if Yt determines v for all v � V � F �
t 
x� is constant�



��

Proof� Suppose that Y�
v� � C and that at some time t� jYt
v�j � �� Let x � ��

Then x � Y�� so F �
t 
x� � Yt by Fact ���� However� only one element of � is in Yt

since jYt
v�j � � for all nodes v� Therefore� F �
t 
x� is that single element regardless

of x� and so must be constant� �

We claimed earlier that bounding chains generalized the notion of monotonicity

and antimonotonicity� In monotonic chains� we trapped the states between two

other states F t
�
(�� and F t

�
(��� Suppose that the partial order � is derived from a

partial order � on the color set� Set Yt
v� � fc � C � F t
�
(��
v� � c � F t

�
(��
v�g�
Each node is given of a color set� and by the monotonic behavior of the chain�

Xt � Yt � Xt�� � Yt��� Furthermore� for jYt
v�j � � to occur for all v� F �
t 
(�� �

F �
t 
(��� meaning that Yt now evolves exactly as Xt � F �

t 
X�� does� Therefore Yt is

a bounding chain�

Antimonotonicity is similar� Again we set Yt
v� � fc � C � Bt
v� � c � Tt
v�g�
and once more it is easy to see that because of antimonotonicity this is a valid

bounding chain�

One chain which is neither monotonic nor antimonotonic is the Dyer�Greenhill

chain of the previous chapter for generating samples from the hard core gas model�

The method used by Dyer and Greenhill for proving that the mixing time of the

chain was polynomial for restricted values of � was path coupling ����� Here we

develop a bounding chain for this problem� This bounding chain will not only allow

us to prove same theoretical mixing time result for the chain as in ����� but it will

also give us a means for experimentally determining the mixing time when � is



�

outside this restricted range 
and it will give an exact sampling algorithm for this

problem as we show in later chapters��

����� Bounding the Dyer�Greenhill Hard Core chain

Recall that the state space for the Dyer�Greenhill chain is f�� �gV � and so our state

space for the bounding chain will be ff�g� f�g� f�� �ggV � For notational convenience�
we will use � to denote the set f�� �g� If a node is assigned a �� that indicates that

F �
t at that node might not be constant�

The Dyer�Greenhill chain ��� chooses a vertex v uniformly at random� then

decides whether to attempt to turn that node color to � or �� If the attempt is

to turn v to �� the colors of the neighbors of the node do not matter' v is colored

� regardless of what the neighbors are� If the attempt is to turn v to � and all

neighbors are � then v is colored �� If at least � neighbors of v are colored � then

v is colored �� If exactly one neighbor of v is colored �� another roll is made which

if successful means that v is colored �� and this neighbor is switched from being

colored � to being colored ��

Most of the bounding chains we will develop are formed from the same process�

Suppose that we wish to generate a bounding function g for a Markov chain with

function f � Then g
y�
v� � ff
x�
v�jx � yg is such a bounding function� That is�

for each possible x that could be in y� compute f
x�� Then for each node v� let

the new value of y
v� be the union over all x in y of f
x�
v�� Then ensures that

both bounding chain properties are true� In constructing a bounding chain� �rst

instantiate all the random variables that are needed to determine f � Then apply
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f to all possible x in y� Then for each node� write down all possible outcomes for

f
x� at that node�

Fortunately� for most chains of interest the value of v at the next step is entirely

determined by the values of the neighbors of v� We do not have to examine all

x � y� rather� we only have to look at all possible values for the neighbors of v that

lie in y�

For the Dyer�Greenhill chain� we will �rst describe in words the behavior of

the bounding chain� This is given in algorithmic form in Figure ���� We need to

examine all possible types of outcomes for the function f � Suppose that the random

variables comes out to be v� and U � ��
� � ��� Then f
x� says to color node v

with �� Therefore 
x�yf
x�
v� � �� and 
x�yf
x�
w� � y
w� for all w � v� In this

case we change y
v� to f�g and leave all the rest of the nodes unchanged�

For all of the following cases suppose that U � ��
� � ��� If all the neighbors

w of v satisfy y
w� � f�g� the only con�gurations x in y also have all neighbors

of v colored �� so x
v� always changes to �� Therefore 
x�yf
x�
v� � f�g� so

g
y�
v� � f�g� All the other nodes remain unchanged�

If at least two neighbors of v have y
v� � f�g� then so do all x in y� and again v is

always colored �� so y
v� � f�g� The tricky cases arise when some of the neighbors

of v are colored � � f�� �g�
Suppose that at least two neighbors of v are colored � in y and the rest are

colored �� Let x� be the con�guration where all neighbors of v are colored �� and

let x� be the con�guration such that y
v� ��� x�
v� � �� Then x� � y and x� � y�

Sadly� we note that f
x�� � � while f
x�� � �� so we must color y
v� with � � f�� �g



��

at the next step�

These are all the functions f where we do not attempt a swap� Suppose now

that exactly � neighbor w of v is colored f�g� and some other neighbor is colored ��

Then if we do not attempt a swap 
because U � ����
� � ����� we know v must be

colored � because of the neighbor colored f�g� so y
v� � f�g at the next step� If we

do attempt a swap� then matters turn ugly� Again let x� be the con�guration where

a � is resolved to a �� and x� be the con�guration where a � is resolved to a ��

Then f
x��
v� � �� f
x��
v� � �� and f
x��
w� � � and f
x��
w� � �� Therefore

both v and w are colored � in the next step�

However� the swap can be helpful for some con�gurations� Suppose that we

attempt a swap and exactly one neighbor w of v is colored �� while the rest are

�� Then again using x� 
a � resolves to a �� and x� 
a � resolves to a ��� we see

that f
x��
w� � f
x��
w� � � and f
x��
v� � f
x��
v� � �� so both v and w are

determined in the next time step�

Theorem ��� With probability �� the values of all the nodes will be determined in

	nite time�

Proof� There is a small but positive chance that the next n moves will be to change

each of the nodes to color � 
where this chance is at least n$��nn
� � ��n��� When

that happens� all of the nodes are determined and once they all are determined

they all stay determined� Therefore� the time needed for complete determination

is stochastically bounded by a geometric random variable� and so is �nite with

probability �� �



�

Of course we would like to make a much stronger statement than that� and in

fact we can� Let ! refer to largest degree in the graph 
where the degree of a node

is the number of undirected edges adjacent to that node��

Theorem ��� Let TBC denote the time that all the nodes are completely determined

by the bounding chain� and so TCC � TBC � If � � ���!� ��� then

E�TBC � � �min



�
� � ��

�� 
!� ���
n log�
�n�� �n

�
� � ��

�
�

Therefore the algorithm runs in O
n lnn� steps when � is bounded away from ���!�
��� and O
n��� steps in general� Moreover� TBC is rarely very much larger than its

expected value


P �TBC � keE�TBC �� � e�k

The proof of this theorem when � 
 ���!��� will be straightforward� but when

� � ���!� �� 
as in the case where we are attempting to sample independent sets

uniformly over graphs of bounded degree �� will require a bit of machinery� and so

we take a brief look at martingales�

����� Martingales

Let Dt denote the set of unknown nodes at a particular time step t� and AT denote

the set of determined nodes 
D stands for �disagree	 and A stands for �agree	��

At time �� all the nodes are colored �� and so jD�j � n� To prove the theorem� we

would like to be able to show that on average the size of Dt is decreasing at each

step� This is the motivation behind the introduction of martingales�



�

De
nition ��	 We say that a stochastic process 
� � � � X��� X�� X�� � � �� is a super�

martingale if �with probability ��

E�Xt��j�
� � � � Xt��� Xt�� � Xt�

In order to prove bounds on the behavior of supermartingales� we need the

concept of a stopping time�

De
nition ���� Suppose that for all t� the event � � t is �
� � � � Xt��� Xt� measur�

able� Then � is a stopping time of the process�

Roughly speaking� � is a stopping time if at all times t we can determine if � has

occurred or not� An example a stopping time is the �rst time that the Markov chain

enters a particular state� Given the past history of the chain� we may determine

whether or not that state has already been entered�

The supermartingale property says that for single time steps the expectation of

the value of the stochastic process decreases on average� This is also true for longer

time intervals� and for stopping times �����

Fact ��� Let fXig be a supermartingale and let � be a stopping time greater than

i� then

E�X� � � E�Xi��

The following theorem is well known� we reprove it here as an illustration of a

proof technique which we will use later�

Theorem ��� Suppose that we have a supermartingale on f�� � � � � ng� and that �

is an absorbing state� Furthermore� suppose that P 
Xt�� � Xt� � p� Then the

expected time until the stochastic process reaches � is O
n��p��



�

The proof technique works by bounding the number of times that the process

moves across the interval from i to i � ��

De
nition ���� We say that a stochastic process X upcrosses 
a� b� at time t�

Xt � a and Xt�� � b� Let U
a� b� be the number of times 
X�� X�� � � �� upcrosses


a� b�� Similarly� a downcrossing occurs when Xt � b and Xt�� � a�

Bounding the expected number of upcrossings in a general supermartingale is

normally accomplished by means of the upcrossing lemma ����� However� for the

special case for which we need it� we can prove a stronger result directly�

Lemma ��� For a supermartingale on �� �� � � � such that � is an absorbing state


E�U
i� i � ��� � i� ��

Proof� Suppose that Xt � i� Let �i�� be the �rst time that the process moves to

a state greater than or equal to i � �� Let �� be the �rst time that the that the

process hits �� Then � � minf��� �i��g is also a stopping time� and

E�Xt� � E�X� �

i � P 
� � ���E�X�� � � P 
� � �n�E�X�n �

i � P 
� � ��� � � � P 
� � �i���E�X�i�� �

i

i� �
� P 
� � �i���

Therefore� the probability that another upcrossing occurs is at most i�
i���� making

the number of upcrossings stochastically bounded above by a geometric random



�

variable with parameter ��
i���� Therefore the expected number of upcrossings is

bounded above by i � �� �

Armed with these lemmas� we now proceed to prove Theorem ����

Proof of Theorem ���� We bound the expected number of times t � � that

Xt � i� This is a random variable which we will call Ni� Note that Xt � i for one of

three reasons� First� we could have had Xt�� � i and the state stayed the same� By

assumption the probability of staying at the same value is at most 
��p�� Second� it
might have been that Xt�� 
 i but Xt�� � i� This implies that there was a 
i��� i�

upcrossing� Finally� we could have had Xt�� � i but Xt�� � i� which implies that

there was a 
i� i��� downcrossing� Note that the number of 
i� i��� downcrossings

is bounded above by one more than the number of 
i� i� �� upcrossings�

Taken together� we have that

E�Ni� � 
�� p�E�Ni� � E�U
i� �� i�� � 
E�U
i� i � ��� � ��

E�Ni� � �

p
� �E�U
i� �� i�� � E�U
i� i � ��� � ��

� �

p
� �i� i � � � ��

�
�i� �

p
�

Since we know that X only takes on values from � to n� we have that the expected

number of steps before hitting � is

E���� �
nX
i�

E�Ni�

�
nX
i�

�i � �

p



�

�

n� ��
n� ��� �

p
�

which is O
n��p�� �

A minor modi�cation to the above theorem will have a noticeable impact on

our ability to prove running time bounds� The only di�erence is that now the

probability that we move is dependent upon the value of Xt�

Theorem ��� Suppose that we have a supermartingale on f�� � � � � ng with � an

absorbing state� Furthermore� suppose that P 
Xt�� � Xt� � pXt� Then the expected

time until the stochastic process reaches � is

nX
i�

�
i� ��

pi
�

Proof� As with the proof of Theorem ���� we proceed by bounding the expected

value of Ni� Here� however� the probability of moving from Ni at any given time

step is at least pi�

E�Ni� � 
�� pi�E�Ni� � �U
i� �� i� � U
i� i � �� � ��

� �

pi

�i� ��

Therefore E���� �
Pn

i�
��i���
pi

� as desired� �

When we have a stochastic process which is better than a supermartingale� we

use Wald�s Inequality 
see ������

Theorem ��� Suppose that X � 
X�� X�� � � �� is a nonnegative stochastic process

such that E�Xt�� � XtjXt� � �q when Xt � �� Then if �� is the 	rst time that

Xt � ��

E�� � � E�X���q�
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����� Running time of bounding chain for Dyer�Greenhill

We need one more well known fact from elementary probability before proving

Theorem ����

Fact ��� Markov�s Inequality� Let X be a nonnegative random variable with posi�

tive expected value E�X�� Then

P 
X � a� � E�X�

a
�

Proof of Theorem ���� For convenience� let Ft be the ��algebra generated by

fXt� jt� � tg� As before� let Dt be the set of unknown nodes at time t� and let At �

V nDt be the set of determined nodes� We will show that jDtj is a supermartingale�

The second bounding chain property guarantees that when jDtj � �� it stays � and

so � is an absorbing state for the jDtj process�
From the algorithm� it is clear that the size of Dt changes by at most two at

each step� jDtj increases in size when nodes move from At to Dt��� and decreases

when nodes move from Dt to At��� Let Vt be the random vertex chosen at time t

by the algorithm� Then P 
v � Vt� � ��n for all v� and

E�jDt��j j Ft� � jDtj� �

n

X
v

E�jDt��j � jDtj j Ft� v � Vt��

From Figure ��� we know that at each step� our choice of v places us in one of six

disjoint cases depending on the color sets of the neighbors of v� So for v satisfying

cases � through �� we compute E�jDt��j � jDtj j v � Vt�Ft��

Suppose �rst that v � At� Let c
v� denote the case that v falls into� from �

through �� Let Ci denote the value of E�jDt��j � jDtj j v � Vt�Ft� given that
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c
v� � i� and v is in At� Then in cases �� �� and � the node always stays in At� so

our expectation is � and C� � C� � C	 � �� If v is in case �� let w be the single

unknown neighbor� With probability ��
�
� � ���� v attempts to swap with w and

so w moves to At� With probability ���
�
� � ���� v attempts to turn to color ��

resulting in v becoming unknown� Hence

C
 �
��

�
� � ��
� �

�
� � ��

�
�

�
� � ��
�

In case �� switching v leads to both v and its neighbor colored � to be moved to

Dt� so C� � � �

�����

� Finally� in case �� attempting to turn v to color � results in v

moving to Dt� so C� �
�

���
�

Now suppose that v was in Dt to start� In taking a step� we do not consider at

all the color of Dt� Hence we can treat such an occurrence as always moving v out

of Dt� and then treating it as though it was in At� Hence for v � Dt and case i�

E�jDt��j � jDtjjv � Vt�Ft� � Ci � ��

Let Ri denote the number of nodes that fall into case i� Altogether� we have

that

E�jDt��j � jDtj j Ft� �
�X
i�

�

n

�
� X
v�At�c�v�i

Ci �
X

v�Dt�c�v�i


Ci � ��

�
	

� �jDtj
n

�
�X
i�

�

n

X
v�c�v�i

Ci

� �jDtj
n

�R
 � C
 �R� � C� �R� � C��

� �jDtj
n

�
�

n
�R
 �R� � �R�� maxfC
� C��

�

�
C�g





Now R
� R� and R� cannot be arbitrarily large� Every vertex counted in R
 and R�

is adjacent to at least one vertex in Dt� Every vertex counted by R� is adjacent to

at least two vertices in Dt� Taken as a whole� the vertices in Dt are adjacent to at

most jDtj! di�erent vertices� Hence

R
 �R� � �R� � !jDtj�

We have shown that C
 � C� �
�
�
C�� and so C � maxfC
� C��

�
�
C�g � �

�
�

���
� so that

E�jDt��j j Ft� � jDtj��jDtj
n

�
jDtj!
n

C

� jDtj
�
�� !��
�
� � ���� �

n

�

� jDtj��

where � is set to be the factor in parenthesis in the last expression� There are two

ways to proceed in the analysis at this point� Since each gives an upper bound on

the expected running time� each will give us one term in the minimum expression

of the theorem� First� since � � �� jDtj is a supermartingale� allowing us to use

Theorem ��� to continue� The probability that jDt��j � jDtj is bounded below

by the probability that a node in Dt is chosen and turned to �� This occurs with

probability jDtj
n
� �
���

� Therefore� by Theorem ����

E�TBC � �
nX
i�

�
i� ��

� � ��
n�

i

� 
�n� lnn�n
� � ��

which is smaller than the second term in the minimum expression of the theorem�

When � 
 �� we can take another approach� When we take a single step� the

expectation of jDtj decreases by a constant factor� We now show by induction on t



�

that

E�jDtj� � E�jD�j��t� 
����

The base case when t � � is simply an identity� As our induction hypothesis�

suppose that ��� holds for time t� The fact that � � jDtj � n tells us that E�jDtj�
is bounded for all t� so at time t� ��

E�jDt��j� � E�E�jDt��jjjDtj�� � E��jDtj� � ��tE�jD�j� � �tE�jD�j��

Note that jDtj is integral� so TBC � t� jDtj � �� Hence

P 
TBC � t� � P 
jDtj � ��

� �

E�jDtj�
� �tE�jD�j�

� n�t�

which shows that TBC has an exponentially declining tail� allowing us to upper

bound E�TBC �� This upper bound is exactly the �rst expression in the minimum

term�

The �nal portion of the theorem� that P �TBC � ekE�TBC �� � exp
�k� follows

from the facts that P 
TBC � eE�TBC �� 
 ��e� and P 
TBC � t � s� 
 P 
TBC �

t�P 
TBC � s�� �

The same basic proof outline will be used again and again as we examine di�erent

bounding chains� First� come up with some integer measure of how far away the

bounding chain is from detecting complete coupling 
in this case� we used jDtj��
Second� show that this measure is a supermartingale� or even better� than it shrinks



�

by a constant factor at each step� Finally� use the facts we have shown about

martingales� or the fact that the measure is integral� to upper bound the time until

our measure hits zero�

Of course� not every bounding chain analysis will be quite as straightforward�

and the next chapter basically consists of simple tricks to allow bounding chains to

be used on each of the models of Chapter ��



��

Bounding chain step for Dyer�Greenhill chain

Set Y � Yt
Choose a vertex v uniformly at random from V
Choose U uniformly from ��� ��
If U � �

���

Set Y 
v� � f�g
Else
Case �� All neighbors of v are colored f�g
Set Y 
v� � f�g
Case �� v has exactly � neighbor w colored f�g� rest are f�g
If U � pswap

�
���

Set Y 
v� � f�g� Y 
w� � f�g
Else
Set Y 
v� � f�g

Case �� v has more than one neighbor colored f�g
Set Y 
v� � f�g
Case �� One neighbor w colored f�� �g� rest colored �
If U � pswap

�
���

Set Y 
v� � f�g� Y 
w� � f�g
Else
Set Y 
v� � f�� �g

Case �� One neighbor w colored f�g� at least one colored f�� �g
if U � pswap

�
���

Set Y 
v� � f�� �g� Y 
w� � f�� �g
Case �� More than one neighbor is unknown� rest are �
if U � �

���

Set Y 
v� � f�� �g

Figure ���� Bounding chain step for Dyer�Greenhill chain



Chapter �

Bounding chains for other models

A priest asked� What is Fate� Master� And he was answered�

It is that which gives a beast of burden its reason for existence�

It is that which men in former times had to bear upon their backs�

It is that which has caused nations to build byways from City to City

upon which carts and coaches pass� and alongside which inns have come

to be built to stave o� Hunger� Thirst and Weariness�

And that is Fate� said the priest�

Fate ��� I thought you said Freight� responded the Master�

That�s all right� said the priest� I wanted to know what Freight was too�

�Kehlog Albran� �The Pro	t�

Finding the fate of a state of the Markov chain is easy once you have a bounding

chain� because no matter what the starting state� the �nal fate of the process will

be the same�

��



��

On the other hand� it turns out that the hard core gas model is one of the

few examples where a Markov chain can be directly turned into a bounding chain�

Often� in order for the bounding chain to detect complete coupling in a reasonable

amount of time� some tweaking of the original chain into a more suitable form is

necessary�

��� Q coloring chain

A case in point is the chain for the Q colorings of a graph 
Figure ������ Jerrum ����

showed that the single site Metropolis Hastings chain for this problem is rapidly

mixing when the number of colors Q � �!� where ! is the maximum degree of the

graph� Salas and Sokal ���� extended this result to the heat bath chain� In this

section we analyze a bounding chain for this chain introduced in ���� and ����� We

will show that this bounding chain detects complete coupling in polynomial time

when Q � !
! � ��� although computer experiments in ���� indicate that it is

polynomial even when Q 
 �! on certain classes of graphs�

Rather than working directly with the heat bath chain� it will be easier to work

with the acceptance rejection heat bath chain when describing the bounding chain�

Although it is not necessary to take this approach when writing and analyzing the

bounding chain� it usually does lead to some simpli�cation�

After ! � � di�erent colors are chosen we know that at least one of them had

to be nonblocking� Recall that in the bounding chain at site we keep a subset of

colors� Y 
v�� In this case Y 
v� is at worst each of the ! � � colors that we tried
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Single site acceptance rejection heat bath Q coloring chain

Set x� Xt

Choose v �U V
Repeat
Choose c �U C
Until c is nonblocking for v
Set x
v�� c
Set Xt�� � x

Figure ���� Single site acceptance rejection heat bath Q coloring chain

for node v� Therefore the size of each Y 
v� in the bounding chain is at most !���

Hence there are at most !
! � �� colors in the color sets of neighbors of v� so if

Q � !
! � �� there is some chance of choosing a color which is known not to be

blocked for v�

The idea of the bounding chain is to keep selecting colors for v� adding them to

the color set� until we have chosen at least ! � � di�erent colors� or we have found

one not in the set� Let w � v denote that fv� wg is an edge of the graph� For each

Bounding chain for single site Q coloring heat bath chain

Set y � Yt
Choose v �U V
Set y
v�� �
Repeat
Choose c �U C
Set y
v�� y
v� 
 fcg
Until c � 
v	wY 
w�

Figure ���� Bounding chain for single site Q coloring heat bath chain

of v� we add to y
v� those colors which could possibly be chosen for x
v�� and so
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Xt � Yt 	 Xt�� � Yt���

As long as Q � !
! � ��� we always have a chance of jY 
v�j � � in the next

round� It turns out that this condition is su�cient for the bounding chain to detect

complete coupling in polynomial time�

Theorem ��� Let TBC be the 	rst time that the bounding chain detects complete

coupling� If Q � !
! � ���

E�TBC � � Qn lnn

Q�!
! � ��
�

If Q � !
! � ���

E�TBC � � �n�Q�

Proof� As with the Dyer�Greenhill bounding chain� we will prove the result by

keeping track of the size of Dt� the set of nodes such that jYt
v�j � �� Let d
v�

denote the number of neighbors of v which lie in Dt� The set of nodes where

jYt
v�j � � we denote At� Let v � At 	 Dt�� denote the event where v moves from

At at time t to Dt�� in the next time step� Such a move makes Dt�� � larger than

Dt�

On the other hand� when v � Dt 	 At��� this decreases Dt�� by � compared to

Dt� Each node is selected to be altered with probability ��n�

E�jDt��j � jDtj j jDtj� �
X
v�At

�

n
P 
v � At 	 Dt�� j jDtj�

�
X
v�Dt

�

n

���P 
v � Dt 	 At�� j jDtj�

�
X
v�At

�

n
P 
v � At 	 Dt�� j jDtj�



��

�
X
v�Dt

�

n
��� � P 
v � Dt 	 Dt�� j jDtj�

�
�jDtj
n

�
�

n

X
v

P 
v � Dt�� j jDtj�

The probability that v is in Dt�� depends on the number of unknown neighbors of

v� which we shall denote d
v�� Suppose that each of these d
v� neighbors has !��

colors in its color set� Then we are uncertain about the status of at most d
v�
!���

colors� That is� for these colors we are not sure whether or not they block v� and

so choosing them for v leads to v entering Dt��� This occurs with probability

P 
v � Dt��� �
d
v�
! � ��

Q
�

Combining this with the fact that each node in Dt has at most ! neighbors� and

so
P

v d
v� � jDtj! yields

E�jDt��j � jDtj j jDtj� �
�

n

�
�jDtj�

X
v

d
v�
! � ��

Q



�
�

n

�
�jDtj� jDtj!
! � ��

Q



which is at most � when Q � !
! � ��� making jDtj a supermartingale� When

Q � !
! � ��� an easy induction gives us

E�jDtj� � n

�
�� Q�!
! � ��

Qn

�t
�

After k Qn lnn
Q�������

steps� this makes E�jDtj� � e�k� Given that jDtj is a nonnega�

tive integer� Markov�s inequality gives P 
jDtj � �� � e�k� which means that the

expected time needed for jDtj to hit � is as in the �rst part of the theorem�



��

For the second half� note that jDtj � jDt��j with probability at least jDtj�
Qn��
which is a lower bound on the chance of picking an unknown node and changing it

to known� Therefore we may apply Theorem ��� which gives us the second half of

the theorem� �

As with the bounding chain case� it is unlikely that complete coupling takes

much longer than the expected time to completely couple� More formally�

Theorem ��� Let TBC be the time that jYt
v�j � � for all v� given that Y�
v� � C

for all v� Let E�TBC � be its expected value� Then P 
TBC � �kE�TBC �� � ��k�

Proof� By Markov�s inequality the probability that TBC � �E�TBC � is at most ����

The starting condition we are given� Y�
v� � C� is in some sense the worse possible�

If Y �
�
v� � Y�
v� for all v� then jYt
v� � �j 	 jY �

�
v�j � ��

Therefore after �E�TBC � steps� either we have complete coupling or we try again�

Since the next steps are independent of the last� the next �E�TBC � steps also have

a � � chance of showing complete coupling� After �kE�TBC � steps� the only way

we could not have complete coupling is if all k sets of �E�TBC � steps failed� which

happens with probability at most ���k�

This chain exhibits the cuto� phenomenon which was seen in the bounding chain

for the Dyer Greenhill hard core chain� When the number of steps is less than n lnn

there is a good chance that we have not even selected all of the nodes at least once�

Therefore the bounding chain could not have converged in this time� However�

when the number of colors is su�ciently high� the bounding chain always detects

complete coupling after O
n lnn� steps� with an exponentially declining probability
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of failure� This behavior will be seen in the Potts model bounding chain as well�

��� The Potts model

As with the Q coloring chain� we begin by writing the heat bath chain for the Potts

model as an acceptance rejection chain� For convenience� in this section we consider

the ferromagnetic model� Similar results may be shown for the antiferromagnetic

model�

We continue using bi
v� to denote the number of neighbors of v which have color

i� After choosing which v to change� let w
i� � bi�v� be the weight associated with

color i� where  is again exp
��T �� A natural upper bound on the weights is ��

With this notation� the general acceptance rejection chain becomes�

Single site acceptance rejection heat bath Potts chain

Set x� Xt

Choose v �U V
Repeat
Choose c �U C
Choose W �U ��� ��

Until W � �bc�v�

��

Set x
v�� c
Set Xt�� � x

Figure ���� Single site acceptance rejection heat bath Potts chain

Here blocking colors do not prevent v from becoming a particular color� they

encourage it�

Now consider how to develop a bounding chain for this process� For each node
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v and color i� let di
v� be the number of neighbors w of v for which jY 
w�j � � and

i � Y 
w�� Let bi
v� denote the number of neighbors w of v for which jY 
w�j � �

and Y 
w� � fig� Then the chance of choosing color i for v may be as high as

bi�v��di�v��� or as low as bi�v��� for any X � Y � Therefore if we fall below

bi�v��� we always know to terminate the loop� but if we are in between this high

and low value� we must add this color to the set of possible colors and repeat the

loop again�

Single site acceptance rejection heat bath Potts bounding chain

Set y � Yt
Choose v �U V
Set y
v�� �
Repeat
Choose c �U C
Choose W �U ��� ��

If W � �bc�v��dc�v�

��

Set y
v�� y
v� 
 fcg
Until W � �bc�v�

��

Set x
v� � c
Set Xt�� � x

Figure ���� Single site acceptance rejection heat bath Potts bounding chain

Again this bounding chain exhibits the same kind of cuto� phenomenon as seen

earlier� where we do not have a good bound until all the nodes have been hit

with nonnegligible probability� and then the probability that we have not detected

complete coupling declines exponentially�
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Theorem ��� Using this bounding chain for the ferromagnetic Potts model�

P

�
TBC �

kn lnn

!
�� ���

�
� e�k�

Proof� Repeating the proof for the Q coloring chain� we are led to

E�jDt��j � jDtj j jDtj � �

n
��jDtj

X
v�V

P 
v � Dt����

A necessary condition for node v to end up in Dt�� is that the �rst color for which

W � �bc�v��dc�v�

��
also satis�es W � �bc�v�

��
� 
This condition is not su�cient since we

may eventually end up choosing this �rst unknown color as the only color picked�

an event which will come into play later when we consider the Ising model��

Using the worst possible upper bound that di
v� � d
v� for all i 
meaning that

Y 
w� � C for all neighbors of v in Dt� we have that the probability that v ends up

unknown is

P 
v � Dt��� � bc�v��dc�v�

bc�v��dc�v�
� bc�v�

bc�v��dc�v�

� �� �

dc�v�

� �� �

d�v�

Therefore

E�jDt�� � jDtj j jDtj � �

n
��jDtj�

X
v�d�v���

�� �

d�v�
�

The interesting thing about the terms in the last summand is that they do not con�

tain any information about the node v other than d
v�� Therefore we just consider
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maximizing this sum subject to the constraint that the d
v� are positive integers

that sum to at most jDtj!�

Given this freedom� the maximum will occur when all of the d
v� � �� Suppose

d
v� � �� This contributes

�� �

d�v�

to the sum� However� if we create a dummy node v� with d
v�� � � and lower d
v�

by �� then the sum of d
w� over all w remains the same� but now the contribution

to the sum is

�� �

d�v���
� �� �


� �� � d�v� � d�v���

d�v�
�

To see that the numerator of this fraction is at most � 
which would mean this

contributes more to the sum than when d
v� � �� we note that at  � � the

numerator equals �� Taking its derivative with respect to  gives

�� d
v�d�v��� � 
d
v�� ��d�v��� � �� d�v���


 �

Making the derivative negative for all  � �� Therefore by the mean value theo�

rem the numerator is less than � for all positive � making this contribution more

signi�cant�

Hence

E�jDt��j � jDtj j jDtj� � �

n

�
�jDtj� jDtj!
�� �


�
�

�
�jDtj
n

�

!� ��� �



�
�



��

This will be negative when  � � � ��
!� ��� in which case an induction may be

used to show that

E�jDtj � n

�
�� !
�� ���

n

�t
�

and the proof is �nished in the same manner as before� �

��� Swendsen�Wang

Swendsen�Wang is unusual in that it switches back and forth between � colorings

on the edges of the graph and Q colorings on the nodes of the graph� Our bounding

chain must be equally quixotic� coloring the edges either f�g� f�g� or � � f�� �g and
coloring the nodes in a similar fashion�

The Swendsen�Wang bounding chain is given in Figure ����� where CA is the

set of connected components with respect to the edges in A� w � v if w and v are

connected via edges in A 
 B� and vC is the component in CA that contains vertex

v� Swendsen�Wang has two phases and so our bounding chain does as well� It is the

�rst phase that makes the bounding chain approach possible� Here edges are thrown

out of the chain independently with probability ��p 
recall that p � ��exp
���T �
is another means of measuring the temperature of the Potts model�� This means

that if an edge is colored f�g or � and is thrown out� then its color will always

change to f�g� When computing components� however� edges that are still colored

� could mean that we do not know which nodes belong to which components� Hence

the colors of these nodes at the next stage of the algorithm will be uncertain�

Analyzing the change in unknown edges is easy during the removal stage� It
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Swendsen�Wang bounding chain

Set y � Yt
Let A� ffv� wg � E � y
v� � y
w�� jy
v�j � jy
w�j � �g
Let B � ffv� wg � E � jy
v� � y
w�j � �� jy
v�j� jy
w�j � �g
For each edge e set U
e� �U ��� ��
For each node v set k
v� �U f�� � � � � kg
For each edge e � A
If U
e� 
 �� p
Set A� A n feg
Set B � B n feg

For all C � CA
Set z
w�� k
Cv� for all w � C
Choose a total order uniformly at random for C � CA
For all v
Set y
v�� 
vC	wC �w	vz
w�
Set Yt�� � y

Figure ���� Swendsen�Wang bounding chain

is the growth of unknown components that makes proving the following theorem

di�cult�

Theorem ��� Set

� � �� 
�� p�� �
Q� �

�Q
� p!

�� p
!� ��

If � 
 �� the Swendsen�Wang bounding chain will have detected complete coupling

by time � log �n with probability at least � ���

Proof� As before� we shall show that jDtj is a supermartingale� We use A and B

as de�ned in the bounding chain step at time t�

The key point is that for a vertex to receive more than one color� it must be

connected to another vertex using edges in B� and at least one edge in B n A� But
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for an edge to be in BnA� it had to have been adjacent to a node inDt� Hence nodes

in Dt�� must be connected through edges in B to a node in Dt� This is necessary

but not su�cient' a node v may be connected to a node in Dt and still end up not

being placed in Dt�� depending on the color choices� Three possibilities that would

preclude v adding w to Dt�� are� w is already in Dt�� because of another node� the

color chosen for v and w is the same� and wC � vC � so w does not add the color

of v to its edge set� Although we cannot analyze the �rst exclusion� it is easy to

quantify the last two�

We shall write w � v if nodes v and w are connected using edges in B� Every

node placed in Dt�� is either in Dt to start with or connected to some node in Dt

using edges in B� Therefore we have that

jDt��j �
X
v�Dt

�
�v�Dt�� �

X
w	v

�k�wC��k�vc��wC	vC


�

The ordering of components is uniform over all possible orderings� which gives us

P 
wC 
 vC� � ���� The probability that the components which v and w lie in

receive di�erent colors is 
Q� ���Q� By linearity of expectations

E�jD�j j Ft� �
X
v�Dt

�
P 
v � Dt�� j F� �

X
w	v

Q� �

�Q


�

A necessary condition for v to be in Dt�� is that at least one edge adjacent to v

must have survived the edge removal phase� This occurs with probability ��
��p���
We bound the number of w � v by using a branching process argument 
see �����

After edge removal� the number of nodes adjacent to w is bounded above stochas�

tically by a binomial random variable with parameters p and !� Each of these is

a separate branching process� with number of children distributed as a binomial



��

random variable with parameters p and !� �� 
The possible number of children is

! � � rather than ! because one edge must be used as the parent�� Let h denote

the expected size of each of these child processes�

Each one of these children processes has 
!� ��p expected number of children�

and so the expected size of each child branching process satis�es the recursion�

E�h� � � � 
!� ��pE�h��

Solving� we �nd that E�h� � ����� p
!� ����

The original node v has at most 
in expected value after Phase I� p! neighbors

connected by unknown edges� Each of these neighbors is also the source of a branch�

ing process� and so altogether the expected number of w � v is p��� � p
! � ���

Summing up� we �nd that

E�jDt��j� �
X
v�Dt

� � jDt��j�

where

� �

�
�� 
�� p�� �

Q� �

�Q
� p!

�� p
!� ��


�

What we have shown is that E�jDt��j j F � � �jDtj� Again this yields via

induction E�jDtjjD�� � �tjD�j� D� is just the entire set of vertices V � and so

E�jDtj� � �tn� Hence after � log �n time steps� E�jDtj� � ���� Since jDtj is
integral� we have that P 
jDtj � �� � ��� by Markov�s inequality� and we are

done��

Like all of our theorems concerning the a priori running time of bounding chains�

this one has an immediately corollary that the chain is rapidly mixing when the
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condition on p is satis�ed� This is similar to a result proved independently by

Cooper and Frieze ��� using the technique of path coupling� The following table

shows the largest value of p over which these results apply�

Table ���� Swendsen�Wang approach comparison

! � � � � � 

Cooper Frieze ����� ����� ����� ����� ���� �����

Bounding chain� Q � � ����� ����� ����� ����� ����� �����

Bounding chain� Any Q ����� ����� ���� ����� ����� �����

Of course� this is at best a theoretical determination� The bounding chain

approach allows for computer experimentation to determine what the actual running

time is for values of p which are much larger�

��� Sink free orientations

In the sink free orientation chain 
Figure ������ we choose an edge at random and

choose a new orientation at random from the set of the orientations that do not

create a sink�

First� note that without loss of generality we may assume that every node has

degree at least �� since a leaf of the graph must have its edge directed out of the

leaf in order to avoid creating a sink�

Suppose we were to begin the bounding chain by labeling every edge � � f��� �g
indicating that we do not know the orientation on any edge� Then we would never
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be able to gain any information about the state of the chain� since we would never

know whether �ipping a particular edge was a permissible move�

Therefore we let Y � Y � 
 Y �� meaning that Y 
e� � Y �
e�
 Y �
e� for all edges

e� At the start of the bounding chain procedure� we single out a particular edge e of

the chain� We set Y �
e� � f�g� Y �
e� � f��g and Y �
e� � Y �
e� �� for all e� � e�

Clearly this means that X� � Y� � Y �
� 
 Y �

� for all X� � �� since for all edges e��

Y�
e
�� ���

If we guarantee that Xt � Y i
t � Xt�� � Y i

t�� for i � �� � for all t� then we will

have guaranteed that Xi � Yt � Xt�� � Yt�� for all t� and we will have a bounding

chain�

We know the direction of some positive number of edges in Y i
t ' therefore it is

possible to learn the identity of others� As always� we say that an edge e is known

if jY 
e�j � �� and otherwise it is unknown� An edge is directed into i if the edge


i� j� is colored �� or if the edge 
j� i� is colored �� and otherwise it is directed out

of i� Using this terminology� the bounding chain may be written as follows�

Now� Bubley and Dyer ��� showed that the sink free orientation chain couples in

expected O
m	� time� So if X� and X� are two arbitrary processes di�erent at time

�� then P �X�
t � X�

t � � ��� for t � �m	� The actual algorithm has two phases� In

Phase I we completely couple using the two processes Y � and Y �� hoping that each

of them detects complete coupling in their half of the states� In Phase II we run

the chain as Bubley and Dyer did� hoping that the two states which remain merge

into a single state�

Theorem ��� For this two phase approach� E�TBC � is O
m���



�

Single edge heat bath sink free orientation bounding chain

Set yk � Y k
t

Choose �e � fi� jg� �U E� where i 
 j
Case �� All edges besides e are known to be directed into i
Set y
e�� f�g
Case �� All edges besides e are known to be directed into j
Set y
e�� f��g
In the remaining cases� choose U �U ��� ��
Case �� U � ��� and no edges 
besides e� known to leave i
Set y
e�� f����g
Case �� U � ��� and no edges 
besides e� known to leave j
Set y
e�� f����g
Case �� U � ��� and an edge known to leave i
Set y
e�� f��g
Case �� U � ��� and an edge known to leave j
Set y
e�� f�g

Figure ���� Single edge heat bath sink free orientation bounding chain

Proof� The probability that a single Phase I Phase II pass detects complete cou�

pling is the probability that three events occur� Let t� be the time at the end of

Phase I� and t� be the time at the end of Phase II� Two of the three events that

must occur are jY k
t�

v�j � � for all v and k � �� �� Let X� and X� be the states

de�ned by Y � and Y � should this occur� Then the third event that must happen is

that X�
t�
� X�

t�
� that is� the two remaining states have coupled by the end of Phase

II�

The probability that the two states couple in Phase II was already shown ��� to

be at least � � when the time the chain is run is O
m	�� Therefore here we bound

the time needed for Phase I to run to completion�
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As always� we will show that jDtj is a supermartingale�

E�jDt��j � jDtj j jDtj� � �

m

�
�X
e�At

P 
e � At 	 Dt�� j jDtj�

� X
e�Dt

P 
e � Dt 	 At�� j jDtj�
�
	

Consider how an edge might move from At to Dt��� Suppose that e � fi� jg� with
i 
 j� Then we know the value of the edge already� so if the roll of U is such that

e does not change direction� we will still know it� Therefore the probability of an

edge becoming unknown is at most � ��

An edge cannot become unknown unless it is adjacent to an unknown edge�

Moreover� it cannot become unknown if it is pointed towards that unknown edge�

For example� suppose e is currently colored ��� and so is oriented 
j� i�� Then if

another edge adjacent to i is unknown then that unknown edge cannot make 
j� i�

unknown� since either we continue with e colored ��� or we reverse the direction

to 
i� j�� which does not create a con�ict at i no matter what the direction of the

unknown edge is�

If however� we have an unknown edge adjacent to j� then switching edge e to


i� j� might create a sink� or it might not� so edge e would become unknown�

Suppose that we have an unknown edge adjacent to i� How many other edges

adjacent to i can it possibly help to become unknown� We have seen that the only

edges it can make unknown are those which are directed 
i� j� for some j� Suppose

that there are at least � such edges� We only selected one edge at a time to change�

so changing � such edge to 
j �� i� would leave at least one edge still directed 
i� j��

so the value of the unknown edge is utterly irrelevant�
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Therefore the unknown edge can at most make one edge adjacent to i unknown�

Suppose that the unknown edge is fi� kg and the edge which it might make unknown

is 
i� j�� Then if fi� kg is chosen and the direction chosen is 
k� i� we know that this

move would not create a sink because we have an edge leaving i� namely� 
i� j��

Each edge has an equal chance of being chosen� therefore

P 

i� j� � At 	 Dt�� j jDtj� � �

�m
� P 
fi� kg � Dt 	 At�� as 
k� i� j jDtj��

Similarly� if this unknown edge could create an unknown edge from edge 
k� ��� then

P 

k� �� � At 	 Dt��� �
�

�m
� P 
fi� kg � Dt 	 At�� as 
i� k���

Summing over all known and unknown edges gives us

X
e�At

P 
e � At 	 Dt�� j jDtj� �
X
e�Dt

P 
e � Dt 	 At�� j jDtj��

thereby showing that jDtj is a supermartingale�

The di�erence between this process and the others that we have considered so

far is that not only is jDtj � � an absorbing state� so is jDtj � n� Fortunately�

due to our trick of using Y � and Y �� we start with jDtj � n� � for both bounding

processes at the beginning of Phase I�

At least one edge in Dt must be adjacent to an edge which is pointing away from

their common node� otherwise Dt would be known� If we select this unknown edge

and direct it towards this common point� then it will become known� The point is

that the probability that jDt��j does not equal jDtj is at least ��
�m��

Theorem ��� deals with the case when � is the only absorbing state� If n is

also an absorbing state of the process� then the expected time until the state is
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absorbed at either � or n is bounded above by the expected time until the state hits

�� which is O
m�����
�m��� � O
m	�� Therefore after �m	 steps� the probability

that the process reaches absorption is ���� The probability that jDtj reached � is

��m� and so the probability that the number of unknowns went to � for both Y �

and Y � is ��m�� Therefore after m� expected runs of length �m	� Phase I will have

condensed the bounding chain to the point where it only contains two processes X�

and X�� Phase II then couples these in time m	� making the total running time

O
m� �m	� � O
m���

��� Hypercube slices

To bound the behavior of the hypercube slices chain� we again use two phases�

Unlike the sink free orientation bounding chain� however� this approach will allow

us to show the mixing time of the chain within a constant factor�

Consider this alternative version of the heat bath chain for hypercube slices

shown in Figure ����� In the earlier chain� we have a � � chance of just holding

and not switching the random coordinate� This chance is taken care of by the test

U� 
 ���� If we do decide to switch� the chance that we switch a node colored � to

� is jC�j�n� and the chance that we switch a node colored � to � is jC�j�n� The test
for U� determines which event actually occurs�

The reason for writing the Markov chain in this form is that now the value of

jC�j is itself a Markov chain� It either goes up � with probability 
n � jC�j��n� or
down � with probability jC�j�n�



���

Alternative heat bath hypercube slice chain

Set x� Xt

Choose U� �U ��� ��
Choose U� �U ��� ��
Set C� � fi � x
i� � �g
Set C� � fi � x
i� � �g
If U� 
 ���
If U� � jC�j�n
Choose i �U C�

Set x
i� � �
Else Choose i �U C�

Set x
i� � �
Set Xt�� � x

Figure ��� Alternative heat bath hypercube slice chain

In Phase I all we keep track of is the value of jC�j� We know that at the beginning

L � jC�j � U � We run the chain in such a fashion so that if jC�
x�j � jC�
y�j� then
jC�
f
x��j � jC�
f
y��j� that is� the stochastic process jC�
X��j is monotonic�

If we have monotonicity� start a hypothetical process with jC�
x�j � L and

another with jC�
y�j � U � and at some future time t� jC�
F
t
�
x��j � jC�
F

t
�
y��j�

then we know that jC�
F
t
�
z��j � jC�
F

t
�
x��j for all z � �� The statistic jC�j will

be the same for all processes� In Phase I� let CL be jC�
F
t
�
x��j where jC�
x�j � L�

and CU be jC�
F
t
�
y��j where jC�
y�j � U � Phase I ends when the jC�j values for

the X and Y processes merge�

How do we guarantee monotonicity� If U� 
 ��� then we have all the processes

with jC�j odd move� and all the processes with jC�j even hold� If U� � ���� we have

all the processes with jC�j hold� and all the even ones move� Since jC�j changes
by at most one at each step� if jC�
x�j 
 jC�
y�j then either jC�
y�j � jC�
x�j is
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even� in which case their di�erence is at least two� Each term changes by at most

one� so their di�erence changes by at most two and jC�
f
x��j � jC�
f
y��j� If

their di�erence is odd then at each step at most one of the values changes� so their

di�erence changes by at most � and again we have that jC�
f
x��j � jC�
f
y��j�
If jC�
x�j � jC�
y�j then jC�
f
x��j � jC�
f
y��j� so altogether we have that

jC�j is monotonic� Once Phase I is over we need only deal with states that contain

Heat bath hypercube slice bounding chain Phase I

Input
 CL� CU

Set y � Yt
Choose U� �U ��� ��
Choose U� �U ��� ��
Choose U	 �U ��� ��
If 
U � ��� and CL is odd� or 
U � ��� and CL is even�
If U� � jCLj�n
Set CL � maxfCL � �� Lg
Else Set CL � minfCL � �� Ug
If 
U � ��� and CU is odd� or 
U � ��� and CU is even�
If U� � jCU j�n
Set CU � maxfCL � �� Lg
Else Set CU � minfCL � �� Ug

Figure ���� Heat bath hypercube slice bounding chain Phase I

the same number of coordinates colored ��

In the alternative heat bath chain� suppose that we decided to change a node

colored � to color �� Some of the nodes are known to be colored � in the bounding

chain� that is� Y 
v� � f�g� so we roll another die to see if we are choosing from

these nodes� or not� If we are not� then we choose a node to switch via a two step
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process� First� pick a node i from the unknown nodes� For a particular process X

lying in the bounding chain� if X
v� � �� we switch X
v� to �� If X
v� � �� then

we pick another node from the unknown nodes where X
v� � �� and switch that�

So this is a form of acceptance rejection sampling� where after the �rst rejection we

give up and just choose from the points meeting our criteria�

So we pick a node� and if it doesn�t meet our criteria of being colored �� we

reject it and pick a node that is colored � for sure� Here�s the rub� the �rst node

that we choose will always be colored � at the end of the step� If it was colored � at

the beginning of the step then we switch it to �� If it was colored � then we pick a

di�erent node altogether and switch the value of that other node� In other words�

at the end of the step in the bounding chain� we know that Y 
v� � ��

As in all of the other bounding chains we have considered� let Dt denote the set

of nodes such that jY 
v�j � �� Let K� be those nodes that are known to be colored

� 
Y 
v� � f�g�� and K� be those nodes that are known to be colored ��

This bounding chain will always detect complete coupling very quickly�

Theorem ��� After �n ln��n�	� time steps� the probability that this bounding chain

will have detected complete coupling is at least �� 	�

Proof� Phase I ends when jC�j is the same for F t
�
z� for all z in the state space�

Phase II ends when F t
�
z� is a constant� We will show that the probability that

Phase I has not ended by time n ln��
U � L��	� is at most 	�� and the probability

that Phase II has not ended by time n ln��n�	� is also at most 	��� The union bound

for failure will then complete the proof�
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Heat bath hypercube slice bounding chain Phase II

Input
 Yt� jC�j

Set y � Yt
Choose U� �U ��� ��
Choose U� �U ��� ��
Choose U	 �U ��� ��
If U � ���
If U � jC�j�n and jC�j � L
If U	 
 jK�j�jC�j
Choose i �U K�

Set y
v�� f�g
Else
Choose i �U Dt

Set y
v�� f�g
Else if U � jC�j�n and jC�j 
 U
If U	 
 jK�j�jC�j
Choose i �U K�

Set y
v�� f�g
Else
Choose i �U Dt

Set y
v�� f�g
Set Yt�� � y

Figure ���� Heat bath hypercube slice bounding chain

We begin with Phase I� Let C �
L and C �

U denote the values of CL and CU after

one time step� and let a denote the change in the di�erence between the upper and

lower bounds� so that

a � 
C �
U � C �

L�� 
CU � CL��

Since jC �
U � CU j � � and jC �

L � CLj � �� we know that a is either ����� or ���
Consider two cases� in the �rst case� C �

L and C �
U have the same parity� Then

with probability ��� they don�t move at all� and with probability ��� they move
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with according to the value of U�� If U� � jCLj�n� either a � � or a � �� 
where

this latter event occurs when jCLj � L� If jCLj�n 
 U� � jCU j�n� then a � ���
and if jCU j�n 
 U�� then a � � or a � �� 
with the second event occurring when

jCU j � U�� Therefore�

E�ajsame parity� � �

�
� �

�

�

�
��CU � CL

n

�

� �CU � CL

n

Now suppose that CU and CL have di�erent parity� Then with probability ���

CL moves� With probability 
n � CL��n� a will be ��� With probability at most

CL�n a will be � 
this is an upper bound on the probability since CL could be L��

The other possibility is that CU moves� again with probability ���� In this case a

is �� with probability CU�n and � with probability at most 
n� CU��n�

Adding everything up� we get that

E�ajdi�erent parity� � �

�

�
�n� CL

n
�
CL

n

�
�

�

�

�
�CU

n
�
n� CU

n

�

� �CU � CL

n
�

And so it does not matter whether or not we started with CL and CU having the

same parity or not� the bound on E�a� is the same�

Another way of writing this bound is

E�C �
U � C �

LjCU � CL� �
�
�� �

n

�

CU � CL��

Following our usual program� we note that this implies that the expected value of

the di�erence after nk time steps is at most 
U � L�e�k� By Markov�s inequality
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and the fact that CU �CL is integer� this is also an upper bound on the probability

that CU � CL� Therefore� after n ln�
U � L��	� steps� the probability that Phase I

has not ended is at most 	�

Now we tackle Phase II� Let Dt be the number of unknown steps at time t� We

�rst note that Dt is more than a supermartingale&it never goes up$ Whenever a site

that is unknown is hit� that site permanently changes to known� The probability of

hitting a site in Dt is just jDtj�n� and this changes the number of unknowns by ��

so

E�jDt��j j Ft� � jDtj
�
�� �

n

�

so once more we have that E�jDnkj� � ne�k and running for n lnn�	 steps� Phase II

will have ended with probability at least �� 	�

��� Widom�Rowlinson

As pointed out in Chapter �� there are several di�erent chains for this model� The

birth death swapping chain will have the strongest theoretical characteristics� How�

ever� one of the other chains might be the faster depending on the implementation�

and so we consider bounding chains for all of the chains given in Chapter ��

����� Nonlocal conditioning chain

First we consider the nonlocal chain� For this chain� we chose a color at random� then

rolled a uniform random variable for each node where that color was not blocked�
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An acceptance rejection approach to this problem would be to roll a uniform for

every node� Then if a node rolls to accept the color and is blocked� leave the node

uncolored�

This idea leads naturally to a bounding chain approach where a node which

might be blocked by an unknown node itself becomes unknown� Let N
v� denote

the node v together with all the neighbors of v�

Nonlocal bounding chain for Widom�Rowlinson

Set y � Yt
Choose i �U f�� � � � � Qg
Let D � fv � jY 
v�j � �g
For all nodes v
Set y
v�� y
v� n fig
For all nodes v
Choose Uv �U ��� ��
If Uv � �i�
� � �i�
Case �� All nodes in N
v� are colored f�g
Set y
v�� fig
Case �� there exists w � N
v� �Dt such that w � f�� ig
Set y
v�� y
v� 
 fig

Figure ����� Nonlocal conditioning chain for Widom�Rowlinson

Theorem ��� Let )�i � �i�
� � �i�� and

� � 
! � ��

�X
i

)�


�min

i

)��

If � 
 �� then the bounding chain will have detected complete coupling in the nonlocal

Widom�Rowlinson chain after ��Q ln
�nQ��
� � �� steps with probability at least

� � ��
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If Q � �� then we have a tighter bound for ��

� � 
! � ��
�
�

�
�

�

�

q
)��)��

�
�

Proof� Let Di
t denote the set of vertices v in Dt such that i � y
v�� Then we

proceed by looking at E�jDi
t��j j F �� The �rst thing to note is that if color i is

chosen� all of Di
t is thrown out when i is removed from y
v� for all v�

Therefore all of Di
t is constructed in the second step� For a node to be added

to Di
t� it must be adjacent to or on top of a node in Dj

t for some j � i� Let dj
v�

denote the number of neighbors of v which are in Dj
t �

E�jDi
t�� j F � �

Q� �

Q
jDi

tj�
�

Q

X
v�V

P 
v � Di
t�� j F�

� Q� �

Q
jDi

tj�
�

Q

X
v�V

X
j �i

�dj�v���
�i

�i � �

�
Q� �

Q
jDi

tj�
�

Q

X
j �i

X
v�V

�dj�v���
�i

�i � �

�
Q� �

Q
jDi

tj�
�

Q

X
j �i

�! � ��jDj
t j)�i�

where )�i � �i�
���i�� Let z be the Q dimensional vector �jz�jjz�j � � � jzQj�T at time

step t� What we have shown is that

E�zt��� � E�E�zt��jF �� � AE�zt��
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with A being a Q by Q matrix�

�! � ��

Q

�
������������

� )�� )�	 � � � )�Q

)�� � )�	 � � � )�Q

���

)�� )�� )�	 � � � �

�
�����������	
�

�
�� �

Q

�
I

An inductive argument shows that E�zt� � AtE�z��� It is well known from linear

algebra ���� that jjAtxjj � tjjxjj� where  is an upper bound on the magnitude of

the eigenvalues of A� In our case� jjE�z��jj � P
i
)�in� and so jjE�zt�jj � tn

P
i
)�in�

After ln
�n�
P

i
)�i� steps� jjE�zt�jj � ��
�n�� so that E�jzij� � ��
�n� for all i�

Therefore by Markov�s inequality the probability that jzij � � is at most ��
�n��

Using the union bound� the chance that all of the jzij are identically � is at most

� ��

It remains to bound � Of course given actual values for the �i� it is a simple

matter to numerically compute the value of � When Q � �� this may also be done

analytically� yielding  � ��� � ���
q
)��)��� For Q � �� the method of Gershgorin

disks may be used to show that

 � �� �

Q
�

�

Q
max
i

��
�
X
j �i

)�i

��
� � �� �

Q

�
��

�X
i

)�i


�min

i

)�i


�

which completes the proof��

H"aggstr"om and Nelander ���� gave a bounding chain for the local heat bath

chain� and showed that for the speci�c case of the Widom�Rowlinson model where

all the �i are equal to �� the bounding chain e�ciently detects complete coupling

when Q�! 
 ��
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Note that for the nonlocal chain� our result gives a polynomial time guarantee

when 
Q� ����! � �� 
 �� When Q � �� this is almost a factor of � improvement

for large !� To get a bound with both the Q� �� and only a factor of ! instead of

!��� we consider a stronger version of the bounding chain than was found in �����

For this chain we will be able to show that it converges in polynomial time when


Q� ���! 
 ��

����� The single site heat bath chain

The base Markov chain we use is the single site heat bath chain� The acceptance

rejection single site heat bath chain for Widom�Rowlinson works as follows� Choose

a node v uniformly at random� Choose a color c for that node where P 
c � �� �

��
� �
P

i �i� and P 
c � i� � �i�
� �
P

i �i�� If color c is blocked at node v� then

pick a new color� repeating until a nonblocking color is chosen for v�

Acceptance rejection single site heat bath
Widom�Rowlinson bounding chain

Set y� Yt
Choose v �U V
Set y
v� � �
Repeat
Choose c �R so that P 
c � �� � ��
� �

P
i �i�

and P 
c � i� � �i�
� �
P

i �i� for all � � i � Q
If for all w neighboring v� y
w� � fig
Set y
w�� y
w� 
 fig

Until c � � or c not blocked by a neighbor of v

Figure ����� Acceptance rejection single site heat bath Widom�Rowlinson bounding
chain
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In ���� it was noted that in bounding chains like the one above� the possibility

exists of always changing the node to a particular color regardless of the values of the

neighbors� In our case we always have a �xed probability of changing the color to

�� When this probability is greater than !�
!���� the bounding chain will detect

complete coupling in polynomial time� Therefore this chain was previously known

to converge when ��
� �
P

i �i� � !��! � ��� or equivalently� when
P

i �i � ��!�

Experimentally� it was noted in ���� that this bound was quite loose� especially

when Q � �� In fact� this chain has exactly the same behavior as the nonlocal chain�

Theorem ��� Let )�i � �i�
� � �i�� and

� � !

�X
i

)�


�min

i

)��

If � 
 �� then the bounding chain will have detected complete coupling in the nonlocal

Widom�Rowlinson chain after �n ln
�nQ��
�� �� steps with a probability that is at

least � � ��

If Q � �� then we have a tighter bound for ��

� � !
�
�

�
�

�

�

q
)��)��

�
�

One immediate di�erence is that the number of steps is larger by a factor of n�

owing to the fact that the nonlocal chain alters all n nodes simultaneously� whereas

the local chain just alters one at a time� Here just measuring running time in terms

of Markov chain steps can be misleading�

Proof� The proof is essentially the same as for the nonlocal chain� A node gets

moved into zi if it is chosen to be the changing node� i is chosen sometime during
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the acceptance rejection process� and it is adjacent to a node in zj for j � i� Let z�i

denote the unknown set for color i after the step is taken� Then if color � is chosen

in the acceptance rejection process the repeat loop stops� Therefore� the probability

of choosing i is at most the probability that i gets chosen before �� But this is just

the probability that i is chosen conditioned on either i or � being chosen� and is

�i�
� � �i�� For each node v� let di
v� denote the number of neighbors of v that lie

in zj for some j � i�

E�jz�ij � jzij j F � �
�

n

�
�X
v�zi


���P 
v �� z�i j F� �
X
v��zi

P 
v � z�i j F�

�
A

� �

n

��X
v

P 
v � z�i j F�


� jzij

�

� �

n

�X
v

)�i�di�v��� � jzij


� �

n

�X
v

di
v�)�i



� �

n

�
�)�iX

j �i

jzjj!
�
	

Note that this is exactly the same equation we derived for the nonlocal chain� except

now E�zt��� � AE�zt�� where

A �
!

n

�
������������

� )�� )�	 � � � )�Q

)�� � )�	 � � � )�Q

���

)�� )�� )�	 � � � �

�
�����������	
�
�
�� �

n

�
I

This in the same as the matrix for the nonlocal chain� except instead of a 
!����Q

factor in front of the �rst term� we have a !�n term� which is why our new running
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time is O

n� rather than O

Q�� Working through the eigenvalue bounds as before

gives the result in the theorem� �

By considering a stronger bounding chain� we have increased the range of �i

where have a polynomial guarantee by a factor of Q�
Q � ��� To further increase

the range� we introduce a bounding chain for the birth death swapping chain�

����� The birth death swapping chain

For the bounding chain for the birth death swapping chain� we may prove the

following�

Theorem ��	 Let )�i � �i�
� � �i�� and

� �
�

�

! � ��

�X
i

)�


�min

i
�i�

If � 
 �� then the bounding chain will have detected complete coupling in the nonlocal

Widom�Rowlinson chain after �n ln
�nQ��
�� �� steps with probability at least � �

��

If Q � �� then we have a tighter bound for ��

� � 
! � ��min
�
�

�

q
)��)���

�

�
max
i

�i

�

The discrete bounding chain is derived from the birth death swapping bounding

chain for the continuous Widom�Rowlinson model� The proof of this theorem and

description of the bounding chain is completely analogous to the continous case�

and will be postponed until Chapter ��



���

��	 The antivoter model

As mentioned in chapter �� the antivoter model and the voter model are closely

related with one important di�erence&the antivoter model has a stationary distri�

bution 
given a nonbipartite graph� whereas the voter model has absorbing states

where all the nodes are colored the same way�

On the other hand� they are linked in that the mixing time for the antivoter

chain is bounded above by the absorption time for the voter model� In fact� as we

shall show� the time needed for the bounding chain to detect complete coalescence

of the antivoter chain is the same as the time until absorption for the voter chain�

To facilitate complete coalescence� we add a symmetric move that at each step

randomly permutes the color set� With probability ���� nodes colored � all �ip to

color � and nodes colored � all �ip to color �� All this accomplishes is to allow us

at the �rst step to say exactly what the color of at least � node is� either � or �� As

with the sink free orientations chain� we need to know the color of at least one site

at all times in order to make any progress� But once at least some of the nodes are

known� then selecting an unknown node and a known neighbor cause the unknown

node to become known�

Instead of labeling each node f�� �g or unknown� assign each node a variable

xi� where xi � f�� �g� The bounding chain proceeds by �ipping the value of the

variable instead of the known value� Then the value of y
i� is a monomial� either xj

or ��xj for some j in V � Once all the monomials y
i� contain but a single variable

xj� we say that we have completely coupled� All nodes colored xj will be a single
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Antivoter bounding chain

Set y � Yt
Choose v �U V
Choose U �U ��� ��
If U � ���
For all v � V
Set y
v� � �� y
v�

Choose w uniformly from the neighbors of v
Set y
w�� �� y
v�
Set Yt�� � y

Figure ����� Antivoter bounding chain

color� and all nodes colored �� xj will be a di�erent color�

However� note that we may run the voter model on two colors in a similar

fashion� except at each step y
w� � y
v� instead of � � y
v�� Absorption occurs

when all the nodes are colored xj� which occurs at exactly the same time that all

the nodes for the antivoter model are either xj or �� xj� A more detailed analysis

can show that the original antivoter chain without the �ipping of color classes is

rapidly mixing' here we just show that our modi�ed chain rapidly mixes�

Theorem ���� After n	!�cmin time steps �where cmin is the size of the unweighted

minimum cut in the graph�� the probability that this chain detects complete coupling

�alternatively� that the two color voter model reaches an absorption state� is at least

�� 	�

Proof� At each step� let j be the value such that the most nodes are colored

either xj or � � xj� Let At denote this set of nodes� and let Dt � V n At� De�ne
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�t �
P

v�Dt
deg
v�� Since deg
v� is always positive� when �t � � we know that

jDtj � �� our standard goal�

A node w moves from At to Dt�� if a neighbor v is selected� and then w is the

random neighbor of v which is selected to be changed� an event which occurs with

probability �
n
� d�v�
deg�v�

� where d
v� is the number of neighbors of v which lie in Dt�

This event changes the value of � by deg
v�� Similarly� a node w moves from Dt

to At if a neighbor v is selected followed by w being selected as the neighbor� This

changes the value of � by �deg
v�� The only way that �t�� � �t is for one of these

two events to occur�

E��t�� j Ft� � �t �
�

n

�
�X
v�At

deg
v�
d
v�

deg
v�
�
X
v�Dt


�deg
v��deg
v�� d
v�

deg
v�

�
	

� �t � �

n
�t �

�

n

X
v

d
v�

� �t � �

n
�t �

�

n
�t

� �t

Hence �t is not only a supermartingale� it is in fact a martingale as well� The sets

At and Dt must be connected by a number of edges cmin� where cmin is the size of

the minumum unweighted cut in the graph� Since deg
v� � ! for all v� we know

that each edge fv� wg in the graph is selected with probability at least ��
n!� So

the probability that � changes value is bounded below by cmin�
n!�� and using

Theorem ��� completes the proof�
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��
 The list update problem

The bounding chain for the list update chains are straightforward� but unfortunately

seem to take longer to detect complete coupling� Consider the direct MA� chain�

which selects an item at random according to a distribution p� then swaps that

item with the chain directly in front of it� To create a bounding chain� we need

only to keep track of where each possible item could be� When jy
v�j � � for all

MA� list update chain

Set y � Yt
Request i �R f�� � � � � ng with the probability of choosing i is pi
If for some j� y
j� � fig
Set y
j�� y
j � ��
Set y
j � ��� fig
Else
For all j from n down to �
If i � y
j�
Set y
j�� y
j� n fjg
Set y
j�� y
j� 
 y
j � ��
Set y
j � ��� y
j � �� 
 fjg

Set Yt�� � y

Figure ����� MA� list update chain

v � f�� � � � � ng� the bounding chain has detected complete coalescence�

The arbitrary transposition chain for the MA� list update process has a similar

bounding chain� Our approach is brute force� Given the two positions picked� one

has a color set and the other has a color set� For each pair� we use our random

uniform U to decide the ordering� and update the color sets accordingly� Note that

taking a single step of the bounding chain may take up to n� time 
within the for
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Arbitrary transposition for MA� bounding chain

Set y � Yt
Choose w� �U f�� �� � � � � ng
Choose w� �U f�� �� � � � � ng n fv�g
Set v� � minfw�� w�g
Set v� � maxfw�� w�g
Set y� � y
v��
Set y� � y
v��
Set y
v��� �
Set y
v��� �
Choose U �U ��� ��
For each 
i� j� with i � y� and j � y�
If U � pdi �
p

d
i � pdj �

Set y
v��� y
v�� 
 fjg
Set y
v��� y
v�� 
 fig
Else Set y
v��� y
v�� 
 fig
Set y
v��� y
v�� 
 fjg

Set Yt�� � y

Figure ����� Arbitrary transposition for MA� bounding chain

loop�� This is in sharp contrast to many of our other chains where the time for a

single step was roughly the same as for the original Markov chain�

When the weights pi are geometric� so that pi � �i� the higher weight items

tend to be placed at the front with very high probability� Under these conditions�

a modi�ed version of this bounding chain where a step takes only as long as the

Markov chain step may be used� Moreover� this chain converges quickly under

certain conditions� This chain takes advantage of the fact that the high weight

items tend to collect on the left side� We let m be the smallest value such that

items � through m are all known� Let LEFT be the set f�� � � � � mg and RIGHT

be the rest of the nodes� Then instead of just wildly choosing positions� we �rst
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decide whether positions come from LEFT or RIGHT and proceed from there�

Note that for any permutation� choosing a random position in that permutation

is equivalent to choosing a random item� This equivalence will be very useful in

constructing a bounding chain�

Theorem ���� Suppose that pi���pi � � � ��� for all i� Then

E�time until complete coupling� � ��n	�

Proof� Given that the weights decrease geometrically� we know that it is likely

that the high weight items will be at the front� Therefore� in this proof we take a

departure from keeping track of jDtj� and instead keep track of mt� where mt is the

largest value such that f�� � � � � mtg are in At� Some value i � mt � � might also be

in At� but we will not use that information in our analysis�

We shall show that on average the value of mt grows larger at each time step�

so that n�mt is a supermartingale� Once mt � n� complete coupling has occurred

and we are done�

In case �� both records are chosen from nodes in At� therefore mt�� � mt since

we are only moving around known nodes�

The value of mt can change in the other two cases� For instance� if both values

come from RIGHT � then it is conceivable that the value of mt can go up if we know

the item which gets placed in position mt � ��

The probability that both choices come from RIGHT � that one choice has po�

sition m � �� and the other choice is the largest record in RIGHT is at least ��n�


it could be ��n if these two positions are the same�� The ratio pj�p
�
j is at least ��



���

so the probability that this largest record gets sorted with the record in position

mt � � is at least ��
� � ��� Hence P 
mt�� � mt � �� � ���n�
� � ����

Unfortunately� mt may go down if we choose one position from LEFT and the

other position from RIGHT � This happens when a � m� Potentially� mt�� � a���

To upper bound the probability that this occurs� we �rst note that the probability

that position a and a particular unknown record j are both chosen is just ��n��

Now the closest that an unknown record can be to positon a is m � �� a� and so

the probability that sorting occurs is at least pm���a
� �
pm���a

� � pm���a
s �� Therefore

the probability of becoming unknown is at most

pm���a
s

pm���a
� � pm���a

s

�
�


p��ps�m���a � �
�

This ratio is largest when p��ps is smallest� We know that pi�pi�d � ���d and

pi�d�pi � ���d�

Let i be the record at position a� For each d there are at most two records whose

label is d away from i� Moreover� the distance between these two records and a is at

least m���a� Hence the probability that position a becomes unknown is bounded

above by

�
�n�m���X
d�

�d�m���a�

� � �d�m���a�
� ��m���a�
�� �m���a��

Combining these terms� we have that

E�mt��jmt� � 
mt � ��
�

n�
� �

� � �
� �

mtX
a�


a� ��
�

n�
� �mt���a

� � �mt���a

E�mt�� �mtjmt� � �

n�

�
�

� � �
� �

mtX
a�


a� ��mt�
�mt���a

� � �mt���a



� �

n�

�
�

� � �
� �

mtX
a��


�a�� �a
�

�� �a�





���

� �

n�

�
�

� � �
� �

�


�� ��	



� �

��n�

Therefore� the expected number of steps needed until mt � n is n�
����n��� or just

��n	 by Wald�s identity�

��	�� Application to nonparametric testing

This problem of sampling from the list update distribution with geometric weights

has another application quite unrelated to the list update problem� Suppose that

we have sampled ��� people about their favorite ice cream� Ranking the results

gives us a permutation� We wish to construct a test for a speci�c statistic of some

sort� such as how many ice cream makers in the top �ve positions are located in

North Dakota�

In order to determine if our test is statistically signi�cant� we �rst need some

model of how the possible rankings are distributed� One common method for accom�

plishing this is to assume that given the true distribution of rankings ��� a sampled

permutation �� is randomly chosen with weight proportional to �d�
��
�� where � 
 �

so that it is unlikely that our surveyed rankings will be a great distance from the

true set of rankings�

This de�nition begs the question� what distance do we use to measure d
��� ����

One possibility is the sum of squares distance� that is

d
��� ��� �
X
i


��
i�� ��
i��
��
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an idea known as Molloy�s Rule�

There are some obvious variations on this� such as using j��
i�� ��
i�j instead
of the squares� However� we shall look further at the sum of squares distance and

see where it leads� Expanding� we have that

d
��� ��� �
X
i

��
i�
� � ���
i���
i� � ��
i�

�

�

�X
i

��
i�
�

��X
i

��
i�
�

��X
i

����
i���
j�
�
�

Two facts help us out� First� assume that �� is the identity permutation� this

changes nothing if we assume that �� has been applied to ��� Second� the �rst two

terms in this product are constants� and so � raised to these terms are constants as

well� Therefore the distribution �
�� � �d�
��
���Z satis�es�

� � �

P

i
��i
��j��

� Y
i

�
���i

��
��i�

� Y
i

�
���i

�n�
��i�

where again we may insert the n in the �nal equation because it is simply a multi�

plicative constant� This is exactly the form of the geometrically weighted list update

problem with ratio ��� and so if �� 
 ��� our previous theorem tells us that we may

exactly sample for this problem as well�
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��� Other applications of bounding chains

We have already seen that having a bounding chain available gives us a means

for experimental determination of the mixing time of the chain� However� the

potential of bounding chains is much greater� In the next chapter� we discuss

coupling from the past 
CFTP�� a means for generating perfect samples from a

distribution� Bounding chains give a way to use CFTP for a particular chain�

Moreover� upper bounds on the time needed for bounding chains to detect complete

coupling will provide an upper bound on the running time of the algorithm�

Coupling from the past has but one weakness� that the user must commit to

running the algorithm until termination in order not to introduce bias into the

sample eventually obtained� Therefore in the chapter following our discussion of

CFTP we examine another method for generating perfect samples based on the

concept of strong stationary times� Again the existence of bounding chains will be

an essential component in creating these perfect samplers�
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Arbitrary transposition for MA� bounding chain II
Set y � Yt
Set At � fv � jy
v�j � �g
Set m� minify
��� � � � � y
i�g � At

Set LEFT � fy
��� � � � � mg� RIGHT � fy
m� ��� � � � � mg
Choose U� uniformly at random from ��� ��

Case � U� �
�
m
n

��
Choose i �U LEFT � Choose j uniformly from the items in LEFT
Let a be the position of record i

Case �
�
m
n

��

 U� �

�
m
n

��
� �

�
m
n

� �
n�m
n

�
Choose i uniformly from the items in LEFT
Choose j uniformly from the items in RIGHT
Let a be the positions of record i

Case �
�
m
n

��
�
�
m
n

� �
n�m
n

�

 U�

Choose U� uniformly at random from ��� ��
If U� 
 ��
m� n��

Set a � m � �� Set j to be the highest probability item in RIGHT
Choose U	 uniformly at random from ��� ��
If a � m � � and j is the highest probability unknown record
Let j � be second highest probability among unknown records
If U	 � �

���p�
j
�pj�

Let y
a� � fjg
Else if a � m
Set p� � maxfpi� pjg� Set ps � minfpi� pjg
If record j is in LEFT
If U	 � �

���ps�p��jb�aj

Sort items i and j
Else
Antisort items i and j

If record j is in RIGHT
If U	 � �

���ps�p���m���a�

Let y
a� � f�g
Else
Let y
a� ��

Set Yt�� � y

Figure ����� Arbitrary transposition for MA� bounding chain



Chapter �

Perfect sampling using coupling

from the past

It is the mark of an educated mind to rest satis�ed with the degree

of precision which the nature of the subject admits and not to seek

exactness where only an approximation is possible�

�Aristotle

The traditional Monte Carlo Markov chain method yields an answer that is only

approximately distributed according to the desired distribution� and this was the

state of the art for decades� Fortunately� certain researchers never read Aristotle�

and in the last �ve years methods have been discovered which allow exact sampling

from the stationary distribution of a chain� Such a method is often referred to as a

perfect sampling algorithm�

Propp and Wilson ���� introduced coupling from the past 
CFTP� as a simple

���



���

algorithm for generating samples drawn exactly from the stationary distribution of

a chain� In only a few years� Monte Carlo Markov chain practitioners have expanded

the scope of CFTP� applying the procedure to dozens of di�erent chains�

The general idea is quite simple� We have often stated that the stochastic

processes which we consider have index set over all integers� including negative

ones� We now describe how to simulate such a chain�

��� Reversing the chain

Suppose that X� has distribution p�� Then the distribution of X� will be p� � p�P �

We wish to �nd a distribution p�� such that p� � p��P � If P has a unique stationary

distribution �� then �P � �� and settingXi to have distribution � for all i 
including

negative i� gives the result�

Hence we suppose that each Xi is distributed according to the unique stationary

distribution of the chain� GivenX�� we wish to simulateX��� X��� � � �� Furthermore�

we wish to insure that P 
Xi � xijXi�� � xi��� � P 
xi��� xi�� Using the fact that

Xi� Xi�� are stationary gives

P 
Xi � xijXi�� � xi��� �
P 
Xi � xi� Xi�� � xi���

P 
Xi�� � xi���

�
P 
Xi�� � xi��jXi � xi�

P

Xi � xi�P 
Xi�� � xi���

� P 
xi��� xi�
�
xi�

�
xi���

This relationship inspires the following de�nition�

De
nition ��� For a Markov chain with transition matrix P and unique stationary



��

distribution �� let

*P 
y� x� �
�
x�

�
y�
P 
x� y�

be the reversibilization of P � If a chain is reversible� then *P � P �

This is why the detailed balance condition is also known as reversibility� Given

a reversibile chain� and X� started in the stationary distribution� we can run the

chain backwards according to P in order to obtain X�� X��� X��� � � � which are also

distributed according to �� and � � � � X��� X��� X� will be distributed as a stochastic

process on a Markov chain�

��� Coupling from the past

Coupling from the past utilizes this characterization to obtain samples that are

drawn exactly from the stationary distribution� Suppose that X� is stationary�

Then using our construction� X�t will also be stationary for all t� Therefore� CFTP

starts at X�t and runs forward up to time �� Suppose that F�t
� is constant� Then

we have that X� � F�t
� 
X�t� which is a known value� Therefore we have obtained

a perfect sample from the stationary distribution� X��

The only di�culty arises when F�t
� is not constant� Then we simply increase

t until F�t
� is constant� As long as this eventually occurs with probability �� this

algorithm will almost surely terminate�
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Coupling from the past

Set t � �
Repeat
Set t� �t� �
Run chain from t to 
t� ����
Until F�t

�t����� is constant

Output F �
t 
�� as our answer

Figure ���� Coupling from the past 
CFTP�

����� CFTP and bounding chains

Propp and Wilson ���� noted that CFTP may be used anywhere F�t
� may be shown

to be constant� although most of their examples dealt with monotonic Markov

chains� For monotonic chains� recall that we need only keep track of F�t
� 
(�� and

F�t
� 
(��� and wait until they meet� It was shown in ���� that the expected time until

they meet is of the same order as the mixing time of the Markov chain�

With bounding chains� we only know that the complete coupling time gives

an upper bound for the mixing time of the chain� but the reverse may not be

true� Still� bounding chains do allow us to determine when F�t
� is constant� and so

immediately the results of the last two chapters indicate that we have algorithms for

perfect sampling from the hard core gas model using the Dyer�Greenhill chain� the

Potts model using single site update or Swendsen�Wang� the k colorings of a graph�

the sink free orientations of a graph� the antivoter model� the restricted hypercube�

and the list access problem�

The running time of CFTP is of the same order as the time needed for complete
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coupling to be detected by the bounding chain� Therefore our results showing that

the bounding chain detects complete coupling immediately extend to give a priori

bounds on the running time of CFTP�

The amount of work needed for CTFP comes from the memory required to store

each f�t� for t � t� � �� In practice� random seeds are used for a pseudorandom

number generator that creates the same sequence of �random	 numbers each time


given the same seed�� Therefore� the memory requirements are reduced to retaining

the seed for t � ��������� � � �� which is usually on the order of lnn�

����� Coupling from the future

As Stephen Hawking pointed out� �Disorder increases with time because we mea�

sure time in the direction in which disorder increases�	 In coupling from the past�

we found X� by starting at a point �t in time and then running forward� The

counterintuitive part of this process from a physical point of view is that disorder�

as measured by the number of possible states admitted by the bounding chain� is

decreasing as time moves forward� However� we could modify our algorithm to start

at a point t � � in time and run backwards using the reversed transition matrix *P �

We shall refer to this time reversed version of the algorithm as coupling from the

future 
CFTF��

Practically� CFTF is no di�erent from CFTP� Most of the chains we consider here

are reversible� and so running the chain forwards or backwards makes no di�erence

whatsoever to running time or memory requirements� This notion of CFTF does

have some nice theoretical implications� however�
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The �rst concerns the time arrow associated with entropy 
disorder�� A general

notion of entropy is the logarithm of the number of states that the system could

possibly be in� With bounding chains� the entropy of a state Yt is
P

v ln jYt
v�j�
When the entropy is �� jYt
v�j � � for all v and we have completely coupled� In

coupling from the past� the entropy decreases as time moves forward� contrary to

the usual physical use of the term�

With CFTF� the bounding chain is working on the reversed chain� and so as

the entropy decreases we are moving backwards in time� exactly as intuition would

suggest�

Second� with coupling from the future we need only de�ne our stochastic process

on index set �� �� � � �� We only need the reversibilization for moving backwards on a

�nite set of indices� not for the entire set of negative integers�

Third� the method of attack in Chapter  will also concentrate on a process

X�� X�� � � � where X� is assumed to be stationary� This forward way of looking at

things makes clearer the connection between the two�

CFTF� like CFTP� is an example of an uninterruptible perfect sampling algo�

rithm� Once a run is started to compute X�� the user must commit to �nishing

the run in order to obtain unbiased samples� In the next chapter we show how this

limitation can be removed with some extra work�



Chapter �

Perfect sampling using strong

stationary times

Technological progress has merely provided us with more e�cient means

for going backwards�

�Aldous Huxley

The reversibilization of a Markov chain� the ability to go backwards in time�

provides the cornerstone for another algorithm for generating exact samples� Unlike

CFTP� this algorithm will be interruptible� in that the user can give up� shut o�

the computer� and go home at any time in the algorithm without introducing bias

into the sample�

Suppose that we have a Markov process 
X�� X�� � � �� where X� is begun in the

unique stationary distribution � of the chain� Then Xt will also be stationary for

all times t� Unfortunately� the simulator must start in a speci�ed state� so instead

���
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of having the situation P 
Xt � x� � �
x�� we must deal with P 
Xt � xjX� � x��

which in general will not be �
x��

We �counteract	 the e�ect of conditioning on the value of X� using a strong

stationary stopping time� Recall that a stopping time is any random variable � such

that the event � � t is �
X�� � � � � Xt� measurable� A strong stationary stopping time

is one that obviates the e�ects of starting in a particular state�

De
nition ��� Say that � is a strong stationary stopping time if

P 
Xt � xj� � t� X� � x�� � �
x��

Here we concentrate our e�orts on a perfect sampling technique introduced by

Fill ���� for a class of chains which are stochastic monotonic 
a relaxation of the

monotonicity property discussed earlier�� In this paper Fill commented that the

method could be generalized� and Murdoch and Rosenthal ��� speci�ed an algo�

rithm which was applicable to a broader range of chains� Here we shall refer to this

more general algorithm as FMR�

Murdoch and Rosenthal developed FMR as an algorithm� Here we show that

their idea also leads to a strong stationary stopping time� Using this idea� we develop

bounds on the running time of FMR in terms of the complete coupling time and

stationary mixing time of the chain� Rather than follow Murdoch and Rosenthal�s

development� we begin by examining how general strong stationary times may be

developed using complete coupling�

Consider again X�� X�� � � � where each Xt has distribution �� Suppose that � is

any stopping time which occurs by time t with positive probability and both �
x��



���

and �
x� are positive� Then

P 
Xt � xj� � t� X� � x�� �
P 
Xt � x�X� � x�j� � t�

P 
X� � x�j� � t�

�
P 
X� � x�j� � t� Xt � x�

P 
X� � x�j� � t�
P 
Xt � x�

�
P 
X� � x�j� � t� Xt � x�

P 
X� � x�j� � t�
�
x�

Our goal is to construct a � such that the fraction multiplying �
x� is equal to ��

Recall that for a process such as X� the reversibilization *P 
y� x� � �
x�P 
x� y���
y�

allows us to simulate the chain in the reverse time direction� Therefore� one method

of generating the random vector X�� � � � � Xt is to generate Xt according to �� and

then run the chain backwards using *P �

Just as we use functions ft 
where Xt�� � ft
Xt�� to take moves on the Markov

chain in the forward direction� let *ft 
where Xt�� � *ft
Xt�� take moves in the

reverse direction� For a 
 b� let *F a
b � fb � fb�� � fa�� so that X
a� � *F a

b 
X
b���

Now suppose that F a
b is a constant� Then this constant is a random variable

with a distribution that is independent of �
Xt�� Therefore� we let � be the �rst

time t such that F �
t is constant� This means that

P 
X� � x�j� � t� Xt � t� � P 
X� � x�j� � t�

and

P 
Xt � xj� � t� Xt � t� � �
x��

Recall that in CFTF 
and CFTP� the goal was to determine the value of the

�xed random variable X�� Now we are more �exible� We are willing to accept any



���

random variable Xt as stationary� as long as complete coupling has occurred moving

backwards from time t to time ��

Algorithmically� this may be used to take perfect samples as follows� Start X�

in an arbitrary state x�� Run the chain forward to time t� This generates a path

X�� X�� X�� � � � � Xt� Now run the chain backwards from time t to � conditioned on

the moves made on the path� If these backwards moves completely couple the chain�

then Xt will be stationary�

The functions *ft move the process backwards in time� By conditioning on the

backwards path� we mean that we choose *ft conditioned on the event that *ft
Xt� �

Xt���

FMR Perfect Sampling

Input
 T � X�� X�� � � � � XT

Run the chain backwards� conditioned on the path XT � � � � � X��
as a complete coupling chain

If the backward chain completely couples by time ��
Output � � t is true
Else
Output � � t is false

Figure ��� Complete coupling strong stationary times

Use of a strong stationary stopping time has one great advantage over CFTP


and CFTF�� It is interruptible� The user runs the chain forward until � � t� If

this takes too long� the user can abort the process without introducing any bias

into samples which might be taken later� As Fill notes ����� this is really more of

a theoretical advantage than a practical one� since when CFTP has small expected
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running time� the probability that the actual running time is larger by a factor of

k declines exponentially in k�

The amount of work can be much greater for this procedure than for CFTP� We

must run the backward chain conditioned on the forward path� which may be quite

di�cult to do� However� for local update algorithms this is usually quite easy� and

later we describe how this procedure may be applied to the Dyer�Greenhill chain

for the hard core gas model�

On the other hand� the amount of work can also be much smaller� We are

conditioning on the forward path started at x�� The choice of x� can make it more

likely that the chain will have completely coupled� Consider the case of single site

update for the hard core gas model� If we start x� at the state of all nodes colored �


the empty independent set�� then in the backwards moves it is more likely to color

a node �� We have seen in the bounding chain that when a node is colored � it

immediately moves from unknown to known� Therefore it is possible that starting

will all nodes colored � makes it more likely that the backwards bounding chain will

show complete coupling�


���� Upper bounds on the strong stationary stopping time

Recall from Chapter � that the separation distance to � is de�ned as

jjp� �jjS � sup
Aj��A���


�� p
A���
A�� �

Just as the coupling theorem allows us to bound total variation mixing time in

terms of a coupling stopping time� Diaconis and Aldous ��� showed how separation
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mixing time is bounding by strong stationary stopping times�

Theorem ��� Suppose that a Markov chain has a strong stationary stopping time

� � then

jjptx � �jjS � P 
� � t��

Therefore� we do not expect that our strong stationary stopping time will run

faster than the separation mixing time� Recall that �S
���� is the �rst time that

the separation distance starting at an arbitrary state falls below � �� and TBC is

the time that the bounding chain detects complete coupling�

Theorem ��� Let T � �E�TBC � � �S
����� Then for any positive t�

P 
� � t� � 
����dt�T e�

where E�� � � �E�TBC � � �S
����� For reversible chains� we may also set T �

�E�TBC ��

Proof� Intuitively� running the chain for �E�TBC � steps gives the bounding chain

time to detect complete coupling in the reverse direction� Running the chain for

another TS steps after that down to � allows the chain to almost reach the stationary

distribution� so that conditioning on the value ofXT does not change the probability

of complete coupling too much� Let BCT
� denote the event that the bounding chain

detects complete coupling from time T to time �� Then given that we start at x��

the probability that � � T is just P 
BCT
� jX� � x��� Let T � �E�TBC � � �S
����

By Markov�s inequality� running the chain backwards from from time T to time

T��E�TBC � � �S
���� gives us at least a � � chance of the bounding chain detecting



��

complete coupling� The remaining time from T � down to � gives us at least a � �

chance that X� will be stationary no matter what the value of state X�S������ Hence�

even if we know that the bounding chain detected complete coupling from time T

down to time �S
����� we know that X� will still be close to stationary�

P 
BCT
� jX� � x�� �

P 
BCT
� � X� � x��

P 
X� � x��

� P 
BCT
T��E�TBC �

� X� � x��

P 
X� � x��

�
P 
BCT

T��E�TBC �
�P 
X� � x�jBCT

T��E�TBC �
�

P 
X� � x��

� �

�
� ����
x��

�
x��

� ����

Therefore P 
� � T � � ��� and since the intervals ��� T �� �T � �� �T �� � � � are

independent� P 
� � kT � � 
����k� which gives the �rst result�

For reversible chains� it is well known that �S
���� � ��TV 
���� � �E�TBC � ���

which yields the �nal result� ��

This shows that when dealing with reversible chains� the running time of FMR

will be similar to the running time of CFTP in number of steps� with the added

bonus of only requiring a set amount of time and memory before the algorithm

begins� 
Note that for the speci�c case of monotonic reversible chains� Fill proved

a tighter running time bound of just TS which might be faster than TCC ������



���

	�� Application to local update chains

In this section� we apply this strong stationary stopping time procedure to the hard

core gas chain of Dyer and Greenhill ��� and the single site Widom�Rowlinson heat

bath chain� both of which are local update Markov chains�


���� The Hard Core Gas Model

Recall from Chapter � the Dyer�Greenhill chain for the hard core gas model� The

use of FMR requires two things� �rst� an e�cient means for determining when

complete coupling has occurred' and second� a way of running the chain forward

conditioned on a single path outcome�

One technique for determining complete coupling is the bounding chain given

in Chapter � as Figure ���� For the remainder of this section� then� we discuss the

requirement speci�c to FMR� that of running the chain conditioned on the outcome

of a single particle�

Consider the path X�� X�� � � � � XT � If we needed to keep track of the entire state

of Xt for every t in �� � � � � T � then FMR would require vastly more memory than

CFTP� Fortunately� for local update chains this is not necessary� Just as with CFTP�

it is enough to record the move made from Xt to Xt�� for all t in �� � � � � T � ��

For the Dyer�Greenhill chain� these moves consist of three types� HOLD� where

Xt�� � Xt� FLIP
v�� where the move consists entirely of �ipping the color of node

v from � to � 
or vice versa�� and SWAP
v� w�� where node v was colored �� node

w was colored �� and the chain switched their values� We deal with each of these
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moves in turn�

For HOLD� we must choose at random ft such that ft
Xt� � Xt� This may be

accomplished through acceptance rejection� Pick a random ft as usual� If ft
Xt� �

Xt� then keep this move� otherwise reject it and begin again� The expected time

needed to make a move is just the inverse of the probability that a random ft �xes

Xt� If v is already �� then this is the probability that v is chosen to be �� If v

is �� then this is the probability that v is chosen to be �� A lower bound on the

probability of holding is the minimum of these two chances� Hence

P 
ft
Xt� � Xt� � min



�

� � �
�

�

� � �

�
�

and the expected number of choices of ft we must make until acceptance is just


� � ��maxf�� ���g�
For the FLIP
v� move� clearly the node chosen for ft is v� If node v moved from

� to �� then U is uniform over ���
� � ��� ��� and if v moved from � to �� then U is

uniform over ��� ��
� � ����

Finally for the SWAP
v� w� move� v was again the chosen node� while U is

uniform over ��� ��
�
������� Hence 
treating � as a constant�� the memory needed

is similar to CFTP where the randomness is coming from true random numbers�


���� Single site Widom�Rowlinson

The discrete Widom�Rowlinson case is similar� There are three types of moves�

HOLD� where Xt�� � Xt� In MOVE�
v�c�� node v is changed to color c� where

neighbors of v include at least one colored c� and MOVE�
v�c� where v is changed
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to color c� but all of the neighbors of v has color �� Again the HOLD move may

be accomplished using acceptance rejection sampling� The expected time needed

will be at most 
� � ��max �� Q��� The MOVE�
v�c� case has the choice of node

immediately being v� and knowing that the color moved indicates that U is uniform

over ���
� � ��� ��� Finally� MOVE�
v�c� has choice of node v� and U uniform over

the range of values which give color c�

As in the hard core gas model case� the information about moves which needs

to be saved is in fact quite small� and the path in its entirety does not need to be

saved�

	�� Application to nonlocal chains

Of course� just because a chain is nonlocal does not mean that FMR cannot be ap�

plied� Recall the nonlocal update chain for discrete Widom�Rowlinson 
Figure �����

drew a set of points of a particular color which are Poisson distributed� Now sup�

pose that we are given two states Xt�� and Xt� and we are trying to compute *ft��

conditioned on the fact that ft��
Xt��� � Xt�

In going from Xt to Xt��� a color c was chosen� all points of that color were

removed� and the color c was added independently for each nonblocked node with

probability �c� In going from Xt�� to Xt� then� we clearly must choose the same

color c� Now the location of the points of color c give us partial information about

what our choices for each node was� Basically� if a node is unblocked in Xt and not

colored c� then we do not color that node c� If it is colored c in Xt� then that node
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will be colored c if it is not blocked� Finally� if a node in Xt is blocked� we must

randomly choose whether or not to color the node c� since the value at Xt imparts

no information�

In other words� at each step of the chain we distribute color c as a Poisson point

process with rate �c on the nodes� The distribution of points of color c in Xt tells

us the value of the point process on all nonblocked nodes� which can then be easily

extended to a point process on all of the nodes� Total memory requirement is again

the memory needed to record a single step of the chain� making the memory needs

roughly the same as with CFTP�

The theoretical advantages of FMR do not appear likely to outweigh the algo�

rithm complexity over CFTP� However� it is interesting to note when an interruptible

perfect sampling algorithm exists that is competitive with CFTP�



Chapter 	

Continuous Models

I am so in favor of the actual in�nite that instead of admitting that

Nature abhors it� as is commonly said� I hold that Nature makes frequent

use of it everywhere� in order to show more e�ectively the perfections of

its Author�

�Georg Cantor

Until now we have only dealt with discrete state spaces �� However� Monte

Carlo Markov chain methods can also be used to obtain samples when the state

space is continuous� We begin by introducing some new techniques and notation to

deal with continous state spaces�

���



���


�� Continous state space Markov chains

The construction and properties of a Markov chain over an arbitrary sample space �

are quite similar to the case when � is �nite� First� we note that we must have a set

of measurable sets on �� say F � Consider the stochastic process � � � � X	� X
� X�� � � �

such that each Xi is a random variable drawn from a probability space on 
��F��

Let �
� � � � X��� X�� X�� � � � � Xi� be the ��algebra generated by � � � � Xi��� Xi�

De
nition ��� Let C � F � The stochastic process X � 
� � � � X��� X�� X�� � � �� on


��F� is a Markov chain if

P 
Xi�� � Cj�
X�� X�� � � � � Xi�� � P 
Xi�� � CjXi��

Instead of a transition matrix� we now record probabilities of moving via a

transition kernal K that behaves in a very similar way to its discrete counterpart�

De
nition ��� A kernal K � � � F 	 ��� �� is a transition kernal for a Markov

chain if

K
x� C� � P 
Xt�� � CjXt � x�

for all x in � and C � F �

De
nition ��� Let p be a probability distribution on 
��F� and K a kernal� Then

for C � F �
pK
C� �

Z
x��

K
x� C�p
dx��

Fact ��� Suppose that the random variable Xt has distribution p� Then Xt�� has

distribution pK�
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De
nition ��� De	ne K� � I� the kernal mapping probability distributions to

themselves� Recursively de	ne �for all C � F�

Kt��
x� C� �
Z
y��

K
y� C�Kt
x� dy��

Fact ��� Note that K� � K� Moreover� for all C � F

P 
Xt�s � CjXt � x� � Ks
x� C��

The notions of irreducibility and aperiodicity also extend in a natural way to

the continuous world�

De
nition ��� A Markov chain is irreducible if there exists a measure � on F
such that for all C with �
C� � �� and for all x � �� there exists a t such that

Kt
x� C� � ��

De
nition ��� Suppose that we have an irredicible Markov chain� and that � is

partitioned into k sets E � fE�� � � � � Ek��g� If for all i � �� � � � � m�� and all x � Ei�

K
x�� nEj� � � for j � i� � mod k� then E forms a k�cycle in the Markov chain�

The period of a Markov chain� is the largest value of k for which a k�cycle exists�

If k � �� the Markov chain is said to be aperiodic�

De
nition ��� A Markov chain is ergodic if it is both irreducible and aperiodic� It

is geometrically ergodic if there exists a probability distribution �� constant � � �

and a function �
x� such that

jjKt
x� ��� �
��jjTV 
 �
x���t�

The chain is uniformly ergodic if �
v� is constant over v � ��



���

Our goal is to bound � away from �� and show that �
x� is not exponential in the

input size for our starting value x� thereby showing that convergence to the desired

stationary distribution occurs in polynomial time�

As in the discrete case� the concept of reversibility will allow us to take exact

samples from the stationary distribution of a chain�

De
nition ��� A kernal K satis	es the detailed balance condition or is reversible

with respect to � if for all A�B � F

�
A�K
A�B� � �
B�K
B�A��

Any distribution which is reversible with respect to K is stationary for K� If �
dx�

is a density function s
x� and K
x� dy� is a density k
x� y�� then the reversibility

condition becomes s
x�k
x� y� � s
y�k
y� x��

Finally� we note that the coupling theorem carries through to the continuous

case�

Theorem ��� Suppose that X� � x� Y� is distributed according to some station�

ary distribution � and the two stochastic processes are coupled� Then if TC is the

coupling time�

jjKt
x� ��� �
��jjTV � P 
TC � t��


�� Continuous time Markov chains

Another extension of Markov chains is to the index set of the stochastic process�

Previously� our stochastic process f� � � � X��� X��� X�
� � � �g was indexed by the in�
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tegers� For continous time Markov chains� the stochastic process will be indexed by

an increasing sequence of real values � � � � k��� k� � �� k�� � � ��

Roughly speaking� continuous time Markov chains introduce �clocks	 to changes�

Suppose that we are at state x� Instead of a random change in the state occurring

at every time step� a clock is attached to every random change� This clock is an

exponential random variable with rate given by a rate kernel� W 
x�A�� We wish to

ensure that the rate at which clocks expire is not too high� so that with probability

� only a �nite number of events occur in a �nite amount of time�

De
nition ��	 We say that W � �� F 	 ����� is a rate kernal if

Z
y�A

W 
x� dy� � W 
x�A�

and Z
x��

W 
x� dx� 
 W 
x��� 
��

Finally� we require that if W 
x� dy� � �� then W 
x�A� 
 W 
y� A� for some con�

stant  for all A � F � �This insures that no state is left instantaneously��

These conditions guarantee that a �nite amount of time elapses between changes�

that is� P 
xt�s � xt� � e�W �x����

Now� because we are dealing with exponential random variables� we �rst gather

some facts about their distribution� Suppose that E
a� denotes an exponential

random variable with rate a�

Fact ��� Exponential random variables have the forgetfulness property� so that for

t� s � ��

P 
E
a� � t � sjE
a� � s� � P 
E
a� � t� � e�at�



��

Fact ��� The rate of the minimum of two exponential random variables is the sum

of their rates�

minfE
a�� E
b�g � E
a� b��

Fact ��� For two exponential random variables� E
a� and E
b��

P 
E
a� � E
b�� 

a

a � b
�

This �rst fact tells us something very important about continuous time Markov

chains� If we are at state x� and s time passes without a clock expiration� then the

distribution of each clock variable is exactly the same as it was before� Nothing

happening over a time period does not give any information about what will be the

next event�

The second fact allows us to give a full description of how the stochastic process

� � � � Xki� Xki��� � � � may be formed� Suppose that Xki � x� Then P 
ki�� � ki � t� �

expf�W 
x���tg� and
P 
Xki�� � A� �

W 
x�A�

W 
x���
�

For notational convenience� we set Xt � Xki � where ki � t 
 ki���

De
nition ���� The transition kernel K is de	ned as

Kt
x�A� � P 
Xt � AjX� � x��

The third fact will be useful when trying to determine the probability that a

particular event occurred given that some event occurred�

Intuitively� a distribution is stationary if the rate at which probability leaves a

state is equal to the rate at which it is entering� More precisely�
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Theorem ��� Suppose that � is stationary for the Markov chain with rate kernel

W � Then �W � ��

This important property allows us to �add	 two continuous time Mark chains

with a common stationary distribution�

Theorem ��� Let W� and W� be two rate kernels for which � is stationary� Then

W� �W� is the rate kernel for a new chain for which � is also stationary�

In other words� if we add new moves to the chain satisfying �Wnew � �� then the

stationary distribution of the chain will remain unchanged�


�� The Continuous Hard Core Gas Model

In the discrete hard core gas model� a con�guration consisted of a set of vertices

on a graph colored �� and the rest colored �� In the continuous case� we again have

a set of points colored �� but now the points come from a continuous state space�

such as a subset of Rd�

Let x � S� where S � Rd is a bounded Borel set� Then x is a con	guration if

the number of points in x is �nite� We will write x � fx�� � � � � xng� and let n
x� be

the number of points in x� In the hard core gas model� each point has a �hard core	

of radius R�� around it� Let �
a� b� be the distance between two points a and b�

The fact that the core is hard means that two cores cannot intersect� or equivalently

in Rd� no two points of a con�guration are allowed to be within a distance R of

each other� We shall refer to a con�guration satisfying this property as valid� The
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probability distribution for the hard core gas model is

s
x� �
�n�x�

Z�

�

if �
xi� xj� � R for all i � j� and � otherwise� As in the discrete case� Z� is the

normalization constant that makes s a probability distribution�

To obtain samples from this distribution� we will use continuous time Markov

chains� The �rst chain we consider was proposed by Lotwick and Silverman ����

who showed that the chain does converge geometrically to the correct stationary

distribution� In other words� for each starting state there exists constants C� and

C� such that the total variation distance between the state of the chain after t steps

and the stationary distribution is at most C� exp
�t�C��� Of course� this result is

not helpful in practice if the constant C� is exponentially large� While we do not

present a full analysis of the convergence rate� for some ranges of � we will show

that this chain does mix in polynomial time�

The chain of Lotwick and Silverman is a spatial birth death chain� These chains

have been extensively studied 
see ����� ����� ����� ����� and have been widely used

for generating point processes on subsets of Rd� The idea is simple� There are

two types of events� births and deaths� Births add points to the con�guration and

deaths remove points� Let x be a con�guration and z a point in space S� If the

birth rate at point z given that we are currently in con�guration x is b
z� x�� then

the probability that a point in dz is added to x in time interval dt is b
z� x�dxdz�

Similarly if z is a point in x� then d
z� x� is the rate at which the point z dies�

In time interval dt the probability that point z is removed from con�guration x is
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d
z� x�dt� Preston ���� showed the following version of reversibility for these birth

death processes�

Theorem ��� Let x be a con	guration and z be a point in the state space� If

b
z� x�f
x� � d
z� x�f
x 
 fzg��

then f
x� is a stationary density for the birth death process�

To show that the Lotwick�Silverman chain has the correct stationary distribution

is an easy application of birth death reversibility� Let U
x� denote the volume that

is within distance R of x� and suppose that we have scaled the problem so that the

volume of S is �� Then new points are added to the set x 
born� in the area not

within distance R of x� Points in x are removed from the set 
die� at rate ��

Note that if we remove the restriction that the cores must not intersect� the

density just becomes f
x� � �n
x� and we have a Poisson point process on S�

When actually simulating the chain� it is quite expensive to compute �� U
x��

so instead an acceptance rejection method is used� A point is chosen uniformly

at random from M at rate �� If it lies within distance R of x� it is not added�

but if no cores intersect the core of the new point� it is added� This is a thinned

Poisson process and so will have rate equal to the old rate times the probability of

acceptance� or exactly �
�� U
x�� as desired�

Since this chain is a birth death chain� we need only verify that birth death

reversibility is satis�ed� The death rate for any point is constant independent of x�

so d
z� x� � � for all z and x� The birth rate for z such that z is not within distance
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Lotwick�Silverman Continuous Hard Core Chain

Set X � Xt

Choose !t exponential with rate �� n
x�
Choose U uniformly from ��� ��
Case �� U 
 ��
�� n
x��
Choose v uniformly at random from S
If �
v� x� � R
Set X � X 
 fvg

Case �� U � ��
�� n
x��
Choose i uniformly from f�� � � � � ng
Set X � X n fxig
Set t � t�!t
Set Xt � X

R of any point in x is also a constant� �� Hence

b
z� x�f
x� � �
�n�x�

Z�

� d
z� x�f
x 
 fzg�

and �
dx� � f
x�dx is a stationary distribution� The set of points in a con�guration

may be though of as a queue� That � is the unique stationary distribution is a

consequence of the coupling lemma and the fact that for any state� there is a small

but positive probability that after � unit of time� the queue will be empty� Even if

the queue does not empty in this time� it will not have grown too much larger with

high probability�


�� Continuous bounding chains

In using CFTP� the goal is the same as in the discrete case� given an unknown state

at time �t� determine whether or not the state becomes known at time �� However�



���

two di�culties make use and analysis of CFTP more di�cult� First� it is quite

di�cult to show that no matter which state we started in at time �t� we ended up

in the same state at time �� The number of possible states to consider is too high�

Therefore the brute force approach that worked quite well in the discrete case

will not avail us here� Instead� we use the approach of Kendall ���� where we learn

something about the unknown state at time �t by looking farther back in time�

De
nition ���� Say that a point z � S has birth death interval �bz� dz� if it was

born at time bz and dies at time dz�

Note that just because a point was born at time bz does not guarantee that it

was added to the set� However� whether or not it was added to the set� it is removed

from the set at all times greater than dz� Therefore� the only points which are even

possibly part of the con�guration at time �t are those whose birth death interval

�bz� dz� contain the time �t� This approach allows us to initialize a bounding chain�

The idea for continuous state space bounding chains is straightforward� A con�

�guration is a set of points� The bounding chain keeps track of two sets of points�

points that are known to be in the set� xA� and sets that are possibly in the set� xD�

At each step� we say that 
xA� xD� bounds x if xA � x � xA 
 xD� We shall refer to

points in XA as known� and points in XD as unknown�

Our initialization procedure says that at time �t� the points xD consists of all

points whose birth death interval contains �t� We wish to take steps in the Markov

chain such that if 
xA� xD� bounds x at time t� it will also bound it at time t� � t�

The procedure works as follows� Suppose a new point is born� Points which are
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blocked by points in xA are de�nitely not added to the set� Also� points which are

not blocked by either xA or xD are de�nitely added to the set� and so are added to

xA� The only uncertainty comes when attempting to add points which are blocked

by points in xD� It is unknown whether these points are added or not� and so they

are placed in xD�

Suppose that we are given a list of birth and death times over a time interval

�a� b�� and a list of z such that bz � a 
 dz� We �rst initialize the bounding chain

settingXD to be this set of z whose lifetime falls across a� We then proceed in sorted

time order� examining and dealing with births and deaths as they arise� Again� this

may be done in linear time� and so utilizing the bounding chain does not increase

the order of complexity of running the Markov simulation� Note that generation of

the initial XD is not di�cult� If we have no prior knowledge about the time before

a� then we simply use a Poisson point process with parameter �� generating lifetime

lengths for these points and then 
using the forgetfulness property of exponentials�

generate death times for each of these points� If we already know something about

birth and death times before a� we simply condition on that information when

creating the Poisson point process�

We may use the bounding chain exactly as we did in the discrete case for either

determination of mixing time� or as a black box for a CFTP perfect sampling

algorithm� As with the discrete algorithms� if we wish to experimentally determine

mixing time� we simply check whether XD is empty at time b� If it is� the state

x � � will have coupled with the stationary path� Nothing in our presentation of

the bounding chain prevents us from modifying b on the �y� and continuing until
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Bounding Chain for Lotwick�Silverman

Input� List of events� interval �a� b�� fz � bz � a 
 dzg
Output� Xb � 
XA� XD�

Set XD � fz � bz � a 
 dzg
For each event e in sorted time order
If e � dz for some z
If z � XD

Set XD � XD n fzg
If z � XA

Set XA � XA n fzg
If e � bz for some z
If �
z�XA 
XD� � R
Set XA � XA 
 fzg
If �
z�XA� � R and �
z�XD� � R
Set XD � XD 
 fzg

Figure ���� Bounding Chain for Lotwick�Silverman

XD is empty�

For coupling from the past� we need to be a little more careful how we generate

the list of birth death times and lifetime crossing times� We generate birth death

times in reverse� that is� starting at time �� we move backwards in time and have

deaths appearing at rate �� For each death� we then have a corresponding birth

occur at a time earlier� such that the di�erence is exponential with rate �� Because

we generate our data death �rst� then birth� it follows that for any time �t� we
immediately know which birth death intervals cross �t and have death times in

��t� ��� It remains to consider death times which cross �t and have death times

in 
����� To limit the possibilities that we must consider� note that any lifetime

which starts before �t and ends after � must cross time � as well� The set of points
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whose lifetime crosses � is just a Poisson point process with parameter �� and so we

generate this list of points� Anytime we need to see how many cross ��t� ��� we just

examine this list and see how many that died after � were also born before �t�
In the discrete case� we found that when � � ��
! � ��� we could show that

the bounding chain converged in polynomial time� For the continuous case� we now

show the following� Our result is stated in terms of the number of events needed to

occur� since it is this value that represents the amount of work actually needed to

be performed in running the algorithm�

Theorem ��� Consider the hard core gas model with parameters � and R� and

suppose that we run the bounding chain for the Lotwick�Silverman chain forward

from time � for k events� Then if � � ��VR� after O
�	 ln
��	�� steps the probability

that we have converged is

P 
XD � �� � 	�

As in Chapter � where we �rst introduced bounding chains� we will require the

use of supermartingales in our analysis�

	���� More on supermartingales

Recall that a supermaringale is a stochastic process such that with probability one�

E�Xt��j�f� � � � Xtg� � Xt�

In expectation� a supermartingale decreases as time goes on� Now suppose that the

supermartingale never grows too fast� so that

Xt�� �Xt � c
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for some constant c� Then Azuma�s inequality ��� limits the probability that the

supermartingale grows too large�

Theorem ��� Let X�� X�� � � � be a supermartingale satisfying Xt���Xt � c� Then

P �Xt �X� � � � e
��

�tc� �

That is� the probability that Xt rises too far above X� is exponentially small in the

time t�

Our method of proving Theorem ��� will be to show that the number of unknown

nodes stays above � with an exponentially declining probability� The sequence

n
XD� has particular properties� such as � being an absorbing state� The following

lemma shows how these properties force the process to hit � quickly�

Lemma ��� Suppose that X is a nonnegative stochastic process satisfying
 � is an

absorbing state� Xt�� � Xt � c� and E�Xt�� � XtjXt� � q where q is a constant

between � and �� Finally� if X� is distributed as a Poisson process with parameter

�� 	 � �� and

t � �
c� q���ln
��	� � 
e�q � ����

q�
�

then

P 
Xt � �� � 	�

Proof� Let �� be the �rst time that the process Xt hits �� Note that the stochastic

process

Nt �

����
���

Xt � tq Xt � �

��q Xt � �



��

is a supermartingale� The fact that E�Xt�� � XtjXt� � q insures that E�Nt�� �
NtjNt� � � when Xt � �� Furthermore� Nt is constant for all t � ��� so it is certainly

a supermartingale� We also have that Nt�� �Nt � c� q so we may apply Azuma�s

inequality� Note N� � X� so P 
N� � i� � e���i�i$� Altogether� we have that

P 
Xt � �� � P 
Nt � tq�

�
�X
i�

P 
Nt � tqjN� � i�P 
N� � i�

�
�X
i�

P 
Nt �N� � tq � ijN� � i�P 
N� � i�

�
�X
i�

e��tq�i�
����t�c�q���e���i�i$

�
�X
i�

e��tq
���qi�i��t�����c�q���e���i�i$

�
�X
i�

e�tq
�����c�q�����e�q����e��e

�q


e�q��i�i$

� e�tq
�����c�q�����e�q�����

For this last value to fall below 	� we must have that

�tq�
�
c� q��

� 
e�q � ��� � ln 	

�
c� q���ln
��	� � 
e�q � ����

q�
� t

which completes the proof� �

Proof of Theorem ���� We utilize our 
by now� standard procedure of looking at

how the size of XD changes with certain events� in this case the set of births and the
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deaths of points inXD� Let X
i
D be the set XD after i such events have occurred� and

let Fi denote the ��algebra generated by all the con�gurations up to the time of the

ith event� We wish to compute a bound on E�n
X i��
D � j Fi�� The rate of births is ��

and the rate of deaths is n
XD�� From Fact ���� we know that the probability that

one of our events is a birth is ��
�� n
XD�� and the probability that an unknown

point dies is n
XD��
��n
XD��� When a point in XD dies� n
XD� goes down by ��

When a point is born� it only joins XD if it tries to be born in an area blocked by

a point in XD� This occurs with probability at most n
XD�VR� 
This is an upper

bound since some of the unknown points� blocked areas might overlap�� Therefore

E�n
X i��
D j Fi� � 
��� n
X i

D�

� � n
X i
D�

�
�

�� n
X i
D�

�VDn
X
i
D��

�
n
X i

D�

�� n
X i
D�

�VD�� ���

Therefore when n
X i
D� � ��

E�n
X i��
D �� n
X i

D�jFi� � VD�� �

�� �
�

We are given that � � VD�� this means that n
X i
D� satis�es the conditions of

Lemma ��� with q � ��VD�
���

� Note that q � �� which means that

P 
n
X i
D� � �� � e��e

� t
��

�
��VD�

���

��
�

Finally� we note that the number of events where a node in XA died is bounded

above by the number of births� Therefore after k events� at least k�� events had to

have been either births or deaths of nodes in XD� which completes the proof��
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	���� The Swapping Continuous Hard Core chain

Greenhill and Dyer ���� increased the ability to analyze the rate of convergence of

the discrete hard core chain by introducing a Broder type swapping move� We now

show that introducing the same move into the continuous hard core chain yields a

similar increase in our analytic ability� The move is as follows� If a point attempts

to be born and is blocked by exactly one point� then the blocking point might be

removed and the new point added� This swap is executed with probability � ��

Algorithmically� this new chain may be written as in Figure ����

Swapping continuous hard core chain

Set x� Xt

Choose �t exponential with rate �� n
x�
Choose U uniformly from ��� ��
Case �� U 
 ��
�� n
x��
Choose v uniformly at random from S
If �
v� x� � R
Set X � X 
 fvg
If �z � x such that �
v� z� � R and �
v� x n fzg� � R
With probability � � set x� x n fzg 
 fvg

Case �� U � ��
�� n
x��
Choose i uniformly from f�� � � � � ng
Set x� x n fxig
Set t� t � �t
Set Xt � x

Figure ���� Swapping continuous hard core chain

This swap move only moves between states with the same stationary probability�

andWswap
x� dy� � Wswap
y� dx� no matter what the probability that we execute the

swap 
when the value of � � was chosen to make the analysis as tight as possible��
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Hence � is also stationary for this rate function� so by Theorem ��� this new chain

has the same stationary distribution as the old one� The new moves do not increase

the number of points in the con�guration� therefore the same argument that showed

geometric ergodicity for the old chain applies here as well�

The bounding chain for this swap chain is analogous to that introduced for the

Dyer Greenhill chain� Deaths occur exactly as before� If a point in xD dies� it is

removed from xD� If a point in xA dies� it is removed from xA�

Suppose that a new point is born� If it is not blocked by any point� either in xA�

or xD� then it is added to xA� If the point is blocked by one point in xD� and we

choose not to swap� then the point is not added� If the point is blocked by two or

more points in xA� the point is not added� If the point is blocked by two or more

points in xD� and no points in xA� we are unsure whether or not to add the point

to the con�guration� and so the point is added to xD� All of these moves are the

same as for the bounding chain for the Lotwick�Silverman chain�

The interesting cases come when the point added is a candidate for a swap� and

the algorithm chooses to execute the swap� Suppose the point is blocked by exactly

one point in xA 
 xD� Then the blocking point is removed� and the new point is

added to xA� If the point is blocked by exactly one point in xA and at least one

point in xD� then we are unsure about two points� the new point might be added

and the blocking point in xA might be removed� Therefore both of these points

must be placed in xD�

Theorem ��� Consider the hard core gas model with parameters � and R� and

suppose that we run the bounding chain for the Lotwick�Silverman chain forward



���

from time � for k events� Then if � 
 � � �VR� then after O
�	 ln
��	�� steps the

probability that we have converged is

P 
XD � �� � 	�

Swapping continuous hard core bounding chain

Input� List of events� interval �a� b�� fz � bz � a 
 dzg�
the swap execute rolls for each birth

Output� Xb � 
XA� XD�

Set XD � fz � bz � a 
 dzg
For each event e in sorted time order
If e � dz for some z
If z � XD

Set XD � XD n fzg
If z � XA

Set XA � XA n fzg
If e � bz for some z
Let D be the number of points y in XD such that �
z� y� � R
Let A be the number of points y in XA such that �
z� y� � R
If D � A � �
Set XA � XA 
 fzg
If D � �� A � � and we do not execute a swap at this birth
Set XD � XD 
 fzg
If D � �� A � � and we execute the swap
Set XD � XD n fy � XD � �
y� z� � Rg
Set XA � XA 
 fzg
If D � �� A � � and we execute the swap
Set XD � XD 
 fzg 
 fy � XA � �
y� z� � Rg
Set XA � XA n fy � XA � �
y� z� � Rg

Figure ���� Swapping continuous hard core bounding chain

The computer time needed to generate a simulation is the number of events

which occur� which is why we phrase this theorem using events rather than time�
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Proof� The proof is very similar to the case of the nonswapping chain� and so we

will utilize the same notation as in that proof� We again will only consider those

events capable of changing n
X i
D�� namely� all births� and deaths of nodes in X i

D�

These events occur at rate r � �� n
X i
D��

The death rate contribution to E�n
X i��
D � j Fi� is the same as before' what

changes is the contribution of the birth rate� Before� births could only increase

n
X i��
D �� but with the introduction of the swap move� it can also decrease the

number of unknowns�� Suppose that a point is blocked by a single point in X i
D�

Then a birth and swap at that point removes a point from X i
D� and so n
X i

D�

decreases by �� If there is a birth and no swap� then the new point joins X i
D and

n
X i
D� increases by ��

If� however� a new point is blocked by a point in X i
D and X i

A� then a swap results

in two points being added to XD� If the point chooses not to swap� then it cannot

be born since it is blocked by X i
A�

Let A� denote the area blocked by a single point in X i
D and no points of X i

A�

Let A� denote the area blocked by more than one point in X i
D and no points of X i

A�

and let A	 denote the area blocked by at least one point in X i
D and exactly one

point in X i
A�

E�n
X i��
D �� n
X i

D� j Fi� � 
���n
X
i
D�

r
� 
���

�
�

�

��
�A�

r

�

�
�
�

�

��
�A�

r

�
�
�A�

r

�
��
�
�

�

��
�A	

r

�



���

�
�n
X i

D� �
�
�
��A� � �A� � A	�

r

Note that each point in A� and A	 is blocked by at least point within distance R of

an unknown point� and each point in A� is blocked by at least two unknown points�

Hence A� � �A� � A	 � n
X i
D�VR� Therefore

E�n
X i��
D �� n
X i

D� j Fi� � n
X i
D���� � n
X i

D�VR���

�� n
X i
D�

and we may apply Lemma ���� As in the nonswapping chain� at least half of the

events must be births or deaths of points in XD� completing the proof��

We have proven that this chain converges rapidly for values of � which are twice

as high as for the nonswapping chain� This swap move may be added to other chains

as well to increase their performance�


�� Widom�Rowlinson

The Widom Rowlinson model was originally conceived as a continuous model �����

where the density of a con�guration of points x � 
x�� x�� � � � � xQ� is

�
n�x��
� �

n�x��
� � � � �

n�xQ�
Q

Z
�

This is exactly analogous to the discrete case� and each of the chains we examined

there has a corresponding continuous chain�

The birth death chain given for the discrete model actually comes from a dis�

cretization of the birth death chain for the continuous model� We say that a point
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v and color i is blocked if �
v� xj� 
 R for some j not equal to i�

Birth death continuous Widom�Rowlinson chain
Set x� Xt

Choose �t exponential with rate
P

i �i � n
x�
Choose U �U ��� ��
Set p� � ��
� �

P
i �i�

For all � 
 i 
 n
Set pi � �i�
� �

P
i �i�

Choose i �R f�� � � � � Qg according to p
If i � �
Choose v �U x� 
 � � � 
 xQ
Let j be the color such that v � xj
Set xj � xj n fjg
Else
If color i is not blocked for node v
Set x
v� � i

Set Xt�� � x

Figure ���� Birth death continuous Widom�Rowlinson chain

As pointed out in ����� this chain exhibits a monotonic structure when Q � ��

For Q � �� we must use a bounding chain� As with the hard core case� a state y

of the bounding chain will be 
x�� x�� � � � � xQ� z�� z�� � � � � zQ�� where each xi contains

points which are known to be colored i� while zi refers to those points that are

might or might not be in the con�guration� If they are in the con�guration� though�

they are de�nitely colored i� Let n
x� � jx� 
 � � � 
 xQj and n
z� � jz� 
 � � � 
 xQj�
Consider a point v and color i� If �
v� xj� 
 R for some j � i� then we say that v

is blocked for i by a known node� If �
v� zj� 
 R for some j � i� then we say that

v is blocked for i by an unknown node�

Theorem ��� Consider the Widom�Rowlinson model with parameters �i� i running
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Birth death continuous Widom�Rowlinson bounding chain

Set y� Yt
Choose !t exponential with rate

P
i �i � n
x� � n
z�

Choose U uniformly from ��� ��
Set p� � ��
� �

P
i �i�

For all � 
 i 
 n
Set pi � �i�
� �

P
i �i�

Choose i �R f�� � � � � Qg according to p
Case �� i � �
Choose v �U x� 
 � � � 
 xQ
Let j be the color such that v � xj
Set xj � xj n fjg
Set zj � zj n fjg
Case �� i � �� v not blocked for i
Set xi � xi 
 fig
Case �� i � �� v blocked for i only by unknown nodes
Set zi � zi 
 fig
Set t� t� �t
Set Yt � y � 
x�� � � � � xQ� z�� � � � � zQ�

Figure ���� Birth death continuous Widom�Rowlinson chain

from � to Q and R� and suppose that we run the bounding chain for this simple birth

death chain forward from time � for k events� For Q � � let

 �
�

�
�

�

�

q
�����

and let

 �
X
i

�i �min
i
�i

for Q � �� If  
 �VR� then after O
 �
�VR��

ln
��	�� events the probability that we

have converged is

P 
n
z� � �� � 	�
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Proof� We consider only those events capable of changing the size of n
z�� namely�

births of new points and deaths of points in z� Let zi denote the unknown set of

points of color i at the beginning of a bounding chain step� and z�i the set afterwards�

Let F denote the sigma algebra generated by events up to the time of z�

A bad event occurs when a point of color i is blocked by a point in zj� where

j � i� Given that we have a birth� a point in zj blocks a volume VR� and so the

total amount of volume blocked could be as high as VR�n
z�� jzij��

E�z�i � zijF � � P 
birth of color i�P 
birth blocked�� P 
death of color i�

�
�i

n
z� �
P

i �i
VR�n
z�� jzij�� jzij

n
z� �
P

i �i

�
�i

n
z� �
P

i �i
�

And so just as for the discrete chain we have that E�z�� � E�E�z�jz�� � E�AE�z�� �

AE�z�� since the elements of A are all nonnegative� Let zt denote the unknown set of

points at time t� An induction yields E�zt� � AtE�z��� so that jjE�zt�jj � tjjE�z��jj�
where  is the highest magnitude eigenvalue of A�

As in the discrete case� the only remaining problem is how to bound � When

Q � �� we preform the computation directly� and  � VR���� � ���
p
������ For

Q � �� the method of Gershgorin disks may be used to show that

 � �� �

Q
�

�

Q
VRmax

i

��
�
X
j �i

�i

��
� � �� �

Q

�
�� VR

�X
i

�i


�min

i
�i


�

To complete the proof� we recall that 
�� ��Q�Q�� � ��e� �
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	���� Continuous swapping chain

The swap move is not di�cult to describe in the continuous case� and it will double

the range of �i over which we can prove that the bounding chain detects complete

coupling in polynomial time� When a point of color i is blocked by any number of

points of color j di�erent from i in the birth death chain� that point is not born�

In a swap move� if a point of color i is blocked by exactly one point of color j � i�

then with probability pswap a swap move is executed and the point is born� and the

blocking point is removed from the set�

Swapping birth death continuous Widom�Rowlinson chain

Set x� Xt

Choose �t exponential with rate
P

i �i � n
x�
Choose U �U ��� ��
Set p� � ��
� �

P
i �i�

For all � 
 i 
 n
Set pi � �i�
� �

P
i �i�

Choose i �R f�� � � � � Qg according to p
Case �� i � �
Choose v �U x� 
 � � �xQ
Let j be the color such that v � xj
Set xj � xj n fjg
Case �� i � � is not blocked for node v
Set xi � xi 
 fvg
Case �� i � � is blocked for v by exactly one point w � xj
If U � pswap
Set xj � xj n fwg
Set xi � xi 
 fvg

Set Xt�� � x

Figure ���� Swapping birth death continuous Widom�Rowlinson chain

The bounding chain must now take into account the possibility of a swap type



���

move� We have the same cases that arise in the discrete case�

As in all cases dealing with the swapping move� changing the value of pswap a�ects

how quickly it actually converges� When pswap � ���� good things happen� The

only di�erence between the theorem below and the theorem for the nonswapping

chain is that here  may be larger by a factor of ��

Theorem ��	 Consider the Widom�Rowlinson model with parameters �i� i running

from � to Q and R� and suppose that we run the bounding chain for this simple birth

death chain forward from time � for k events� For Q � �� let

 �
�

�

X
i

�i �min
i
�i�

If pswap � ��� and  
 �VR� then after O
 �
�VR��

ln
��	�� events the probability that

we have converged is

P 
n
z� � �� � 	�

For Q � �� either let pswap � ��� and

 �
�

�
max
i

�i�

as above� or let pswap � ��� and

 �
�

�

�
�

�
�

�

�

q
����

�
�

Either way� if  
 �VR� the same probability of convergence holds�

Proof� Let jDtj be the set of unknown points at time t� Then these points cover

area in three ways� 
These are similar to the three classi�cations of nodes seen in



���

the discrete case�� To change the value of jDtj� either an unknown point died� or

a point being born resulted in one or two nodes being switched to unknown� The

rate at which points are born or die from the unknown set is r � jDtj�P
i �i�

Let D� denote the area covered by exactly one unknown point of some color�

When a point is born in D�� we are in case � in the swapping bounding chain� Let

D�
i denote the area covered by exactly one known point of color i and at least one

unknown point of color i� this corresponds to case �� Finally� let D	
i denote the area

covered by exactly at least two unknown points of color i and no known points� so

that when a point is born here we are in case ��

Suppose that Q � �� so that  �
P

i �i�mini �i� Case � can have two outcomes�

If we choose to swap� then Dt�� is smaller than Dt by one node� but if we do not

choose to swap it grows by one� For a point v � D�� let bv be the color of the point

i such that v is being blocked by a point in zi� The point is that births of color bv

are not blocked and do not a�ect jDtj if the birthing point has color i� but might

change if the new point has color j � i� This event occurs with probability ��bv�r�

Given that we have a birth event but that we have not yet selected a position� the

expected change due to points in D� will be

Z
v�D�


���
�� pswap�
��bv
r
� pswap

��bv
r
dv �

Z
v�D�


�� �pswap�
��bv
r
dv

�
Z
v�D�


�� �pswap�


r
dv

� D�
�� �pswap�


r

where the inquality is valid as long as pswap � ���� We will later set pswap � ���� so

this is true�



��

For case �� choosing to swap makes jDt��j � jDtj � �� but is unchanged if we do

not swap� The contribution from this case is

Z
v�D�

�pswap
��bv
r
� D�
�pswap�



r
�

In case �� the new node is always part of Dt�� so jDt��j � jDtj � �� Therefore

the contribution is independent of pswap�

Z
v�D	

��bv
r
� D	

r
�

The �nal event that may occur to a�ect jDtj is the death of an unknown node�

which occurs with probability jDtj�r and results in the removal of exactly one

unknown node� We now set pswap � ���� so that

E�jDt��j � jDtj j Ft� � D�
�� �pswap�


r
�D�
�pswap�



r
�D	

r
� jDtj

r

� 

�r

h
D� �D� � �D	

i
� jDtj

r
�

Points in D� and D� are covered by at least one node of Dt� and points in D� are

covered by at least two nodes of Dt� so D
� �D� ��D	 � VRjDtj� 
The existence of

this bound is why we choose pswap as we did�

Following our usual derivation� E�jDtj� � �tE�jD�j� where

� � �� VR��� �

r
�

We have that � 
 � when �VR 
 � and since jDtj is integral and jD�j is poisson
with rate

P
i �i� Markov�s inequality �nishes the proof�

For Q � �� � � maxi �i� so we may use that for � However� we may also go

into more detail� splitting apart D� into D�
� and D�

�� Let D�
� be the area blocked



��

for � by exactly one unknown point of color � and D�
� be the area blocked for � by

exactly one unknown point of color � 
these areas may overlap�� Split D� and D	

in a similar fashion�

As in the regular birth death chain� let zi denote the number of unknowns of

color i � f�� �g� and z�i denote the number of unknown points after the step is taken�

Then from our discussion above� we know that

E�z�� � z� j F � �
��
r

h
D�

�
�� pswap� � �D�
�
pswap�

i
� ��

r
D�

�pswap �
jDtj
r

� ��
r

�

�

h
D�

� �D�
�

i

� ��
r

�

�
z�VR

using the fact that D�
� �D�

� � z�VR� An analogous equation may be derived for the

expected change in z��

This is the same recurrence that we have seen for the Q � � case in the regular

birth death chain 
for both the continuous and discrete case�� The eigenvalues of

the system are smaller than in the previous case by a factor of ���� giving the result�

�

The moral of this chapter is� everything that works in the discrete world carries

over to the continuous realm with no problems�



��

Swapping birth death continuous Widom�Rowlinson
bounding chain

Set y � Yt
Choose !t exponential with rate

P
i �i � n
x� � n
z�

Choose U uniformly from ��� ��
Set p� � ��
� �

P
i �i�

For all � 
 i 
 n
Set pi � �i�
� �

P
i �i�

Choose i �R f�� � � � � Qg according to p
Case �� i � �
Choose v �U x� 
 � � �xQ
Let j be the color such that v � xj
Set xj � xj n fjg
Set zj � zj n fjg
Case �� i � �� v not blocked for i
Set xi � xi 
 fig
Case �� i � �� v blocked for i by at least two unknown nodes
Set zi � zi 
 fig
Case �� i � �� v blocked for i by exactly one unknown node w � zj
If U 
 pswap
Set zj � zj n fwg
Set xi � xi 
 fvg
Else Set zi � zi 
 fvg
Case �� i � �� v blocked for i by exactly one known node w � xj�

and at least one unknown nodes
If U 
 pswap
Set xj � xj n fwg
Set zj � zj 
 fwg
Set zi � zi 
 fvg

Set t� t� �t
Set Yt � y � 
x�� � � � � xQ� z�� � � � � zQ�

Figure ��� Swapping birth death continuous Widom�Rowlinson chain



Chapter 


Final thoughts

�I don�t see much sense in that�	 said Rabbit� �No�	 said Pooh humbly�

�there isn�t� But there was going to be when I began it� It�s just that

something happened to it along the way�	

�A�A� Milne

The theoretical bounds on the mixing time derived using bounding chains are

always weaker than what may be found experimentally� For example� in chapter �

we saw a bounding chain for the list update problem that is guaranteed to run

quickly when the probabilities of selecting items are geometric� i�e�� pi�pi�� � � for

some � � ���� When � � ���� experiments must be run to see how quickly the

bounding chain converges�

As shown in the graph below� this bounding chain appears to be polynomial

when � � ��� or lower� but it also clearly exponential when � � ���� These running

times are an average of ���� runs of the bounding chain�

��
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Figure ���� TBC for list update chain

Given that practice always wins over theory� there are of course several reasons

why we are still interested in theoretical bounds on the time bounding chains need

to detect complete coupling� First� the theoretical range of parameters over which

the chain is rapidly mixing is a solid indication of the actual usefulness of the

chain� As we have seen� the simple local analysis of bounding chains tends to

give results that are within a constant factor of the true answer� This is a trivial

statement for bounding chains such as the list update chain for geometric weights�

where the parameter � seems independent of n� However� for chains such as the

antiferromagnetic Potts model where the range of � where the chain is rapidly

mixing depends quite strongly on !� this is a somewhat surprising fact�



��

Second� as an immediate corollary of the bounding chain mixing time we get

an immediate bound on the mixing time of the chain� and a priori bounds on the

running time of CFTP and FMR for perfect sampling� It is always nice to know

that certain problems� such as randomly sampling from the sink free orientations of

a graph� have polynomial 
expected� running time algorithms�

Coupling from the past is a simple idea with extraordinary consequences for

the practice of Monte Carlo Markov chain methods� However� using CFTP is not

always easy� Bounding chains are an important tool for using perfect sampling

algorithms such as CFTP and FMR� or even just for determining the mixing time

of a chain� The fact that it leads to relatively straightforward local analyses of the

original chains is an added perk that makes this method surprisingly powerful�
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