Mark Huber Publications

Spatial Birth-Death-Swap Chains
Mark Huber, Bernoulli (accepted 2011)

Abstract: Markov chains have long been used for generating random variates from spatial point processes. Broadly speaking, these chains fall into two categories: Metropolis-Hastings type chains running in discrete time and spatial birth death chains running in continuous time. These birth death chains only allow for removal of a point or addition of a point. In this work it is shown that the addition of transitions where a point is moved from one location to the other can aid in shortening the mixing time of the chain. Here the mixing time of the chain is analyzed through coupling, and use of the swap moves allows for analysis of a broader class of chains. Furthermore, these swap moves can be employed in perfect sampling algorithms via the dominated coupling from the past procedure of Kendall and Mller. This method can be applied to any pairwise interaction model with repulsion. In particular, an application to the Strauss process is developed in detail, and the swap chains are shown to be much faster than standard birth death chains.

Keywords: Perfect simulation; Coupling from the past; swap moves; birth death process; spatial point processes, Strauss process.

2000 Mathematics Subject Classification: Primary 60J10, Secondary 65C05,68U20,60E05,60E15.

This site supported by NSF CAREER grant DMS-05-48153. Last update: 04 December 2009. Note: All downloads provided solely for use within the restrictions of the Fair Use Act, and all copyrights remain with their respective owners.