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Semantic understanding of numbers and related concepts can be dissociated from rote
knowledge of arithmetic facts. However, distinctions among different kinds of semantic repre-
sentations related to numbers have not been fully explored. Working with numbers and arith-
metic requires representing semantic information that is both analogue (e.g., the approximate
magnitude of a number) and symbolic (e.g., what 4 means). In this article, the authors describe
a patient (MC) who exhibits a dissociation between tasks that require symbolic number knowl-
edge (e.g., knowledge of arithmetic symbols including numbers, knowledge of concepts related
to numbers such as rounding) and tasks that require an analogue magnitude representation
(e.g., comparing size or frequency). MC is impaired on a variety of tasks that require symbolic
number knowledge, but her ability to represent and process analogue magnitude information
is intact. Her deficit in symbolic number knowledge extends to a variety of concepts related
to numbers (e.g., decimal points, Roman numerals, what a quartet is) but not to any other
semantic categories that we have tested. These findings suggest that symbolic number knowl-
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edge is a functionally independent component of the number processing system, that it is
category specific, and that it is anatomically and functionally distinct from magnitude
representations.  2001 Elsevier Science
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Researchers studying the functional organization of number processing sometimes
distinguish between number knowledge that is procedural or automatic (e.g., arithme-
tic skills, retrieving multiplication facts), on the one hand, and number knowledge
that is more semantic or conceptual (e.g., an understanding of the magnitude of a
number, the knowledge that multiplication is commutative), on the other. However,
the relationship between different kinds of semantic representations in the number
domain has not been systematically investigated. In this article, we describe a neuro-
logical patient (MC) who is dramatically impaired on tasks that involve symbolic
number knowledge but who is not impaired on tasks requiring the processing of
analogue magnitude information. This dissociation suggests that different types of
semantic representations used by the number system depend on different neural sys-
tems.

Dissociations between Mathematical Skills and Mathematical Understanding

The distinction between mathematical skills, on the one hand, and mathematical
understanding, on the other, is now well established (Delazer & Benke, 1997;
Hittmair-Delazer, Sailer, & Benke, 1995; Hittmair-Delazer, Semenza, & Denes,
1994; McCloskey, Aliminosa, & Sokol, 1991; Sokol, McCloskey, & Cohen, 1989;
Warrington, 1982). Retrieving memorized arithmetic facts (e.g., multiplication ta-
bles), applying certain general arithmetic rules (e.g., anything times zero equals zero),
and implementing basic calculation procedures (e.g., the sequence of elementary op-
erations involved in multidigit arithmetic) all might be considered mathematical skills
(McCloskey et al., 1991). Such skills are assumed to be highly practiced and can be
applied without a real appreciation of their underlying conceptual foundations. Real
mathematical understanding, by contrast, is assumed to depend on knowledge that
is more conceptual (e.g., the knowledge that multiplication is the same as repeated
addition, the knowledge that addition and multiplication are commutative whereas
subtraction and division are not). Conceptual number knowledge has been hypothe-
sized to be distinct from mathematical skills, both functionally and neuroanatomically
(Hittmair-Delazer et al., 1995).

Consistent with this distinction, a dissociation between knowledge of arithmetic
tables and conceptual number knowledge has been found following brain damage.
Warrington (1982) described a patient (DRC) who exhibited an impairment in retriev-
ing arithmetic facts despite a preserved ability to describe the conceptual basis of
each of the basic arithmetic operations. Hittmair-Delazer et al. (1994) described a
patient (BE) who was impaired in recalling and using multiplication and division
facts but who was able to solve multiplication and division problems by exploiting
extensive conceptual knowledge that was intact. A similar patient (DA) exhibited
intact processing of algebraic expressions and a good understanding of complex
arithmetic text problems despite an inability to resolve simple arithmetic problems
(Hittmair-Delazer et al., 1995). (For descriptions of other patients exhibiting similar
dissociations, see McCloskey et al., 1991; McCloskey, Caramazza, & Basili, 1985;
Sokol et al., 1989.)

Delazer and Benke (1997) recently described a patient (JG) who exhibited the
converse dissociation, that is, a relative sparing of memorized arithmetic facts despite
having lost conceptual knowledge underlying those same facts. Specifically, this pa-
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tient made relatively few errors in single-digit multiplication tasks, whether presented
verbally (59/64 correct) or visually (13/14 correct), but displayed virtually no under-
standing of multiplication at a conceptual level. For example, she was completely
unable to illustrate multiplication using paper and pencil, a number line, or her fin-
gers. Similarly, she failed to solve problems that required an appreciation of some
of multiplication’s basic properties (e.g., if 12 3 4 5 48, then what is 4 3 12? If
12 3 4 5 48, then what is 12 1 12 1 12 1 12?). Taken together, these patients
exhibit a double dissociation between knowledge of memorized arithmetic facts and
conceptual number knowledge, suggesting that the two types of number knowledge
are functionally and anatomically distinct (Delazer & Benke, 1997; Hittmair-Delazer
et al., 1994, 1995).

Dissociations between Exact and Approximate Calculation

A related, but somewhat different, dissociation has been reported between exact
calculation (e.g., determining the exact value of a multiplication problem by con-
sulting memorized arithmetic facts) and approximate calculation (e.g., determining
which of two Arabic numbers is larger, rejecting calculation results that are not even
close to correct). For example, Dehaene and Cohen (1991) described a patient (NAU)
who was severely impaired at exact calculation (e.g., he judged 2 1 2 5 5 to be
correct) but was relatively preserved at approximate calculation tasks, such as re-
jecting 2 1 2 5 9 and determining which of two numbers is larger. Dehaene and
Cohen (1997) described patients exhibiting both sides of the double dissociation;
patient BOO suffered from a selective deficit of exact calculation with intact approxi-
mate calculation, while patient MAR exhibited preserved exact calculation with im-
paired approximate calculation. Behavioral, neuroimaging, and ERP results are also
consistent with this dissociation (Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999).

Dehaene and Cohen (1997) and Dehaene et al. (1999) interpreted these cases within
their triple-code theory of number processing (Dehaene, 1992, 1997; Dehaene &
Cohen, 1995). This theory distinguishes among three categories of number represen-
tations: (a) a visual Arabic code, which allows digit strings to be processed on a
visuospatial sketchpad; (b) a verbal code, which is the primary code for accessing
memorized arithmetic facts; and (c) an analogue magnitude code, which represents
the quantity conveyed by numbers. In their view, exact calculation puts particular
demands on access to memorized arithmetic facts that are represented in the verbal
code, and damage to the verbal system therefore produces selective impairments in
exact calculation (Cohen, Dehaene, Chochon, Lehericy, & Naccache, 2000; but for
evidence that calculation skills can be preserved despite profound language impair-
ments, see Rossor, Warrington, & Cipolotti, 1995). Operations such as single-digit
multiplication, and to some extent addition, which tend to be solved by memory
retrieval, are therefore predicted to be particularly vulnerable to damage of the verbal
system. Conversely, approximate calculations put more emphasis on the magnitude
of numbers rather than exact values and are therefore more dependent on the analogue
magnitude system. Operations that are solved by accessing quantity representations
rather than by direct memory retrieval (e.g., Arabic number comparison and even to
some extent subtraction) are therefore predicted to be impaired when the analogue
magnitude system is damaged.

Dissociations among Semantic Representations? Symbolic
versus Analogue Codes

In short, there is compelling evidence for two different, but related, dissociations
in the number processing system: Conceptual number knowledge dissociates from
arithmetic skills, and approximate calculation dissociates from exact calculation. Al-
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though these dissociations are different, both draw a distinction between representa-
tions that are assumed to be semantic (e.g., conceptual number knowledge, analogue
magnitude information) and those that are more procedural (e.g., arithmetic skills,
exact calculation). One potentially important difference is in the nature of the seman-
tic representations that the two theoretical distinctions assume. As Delazer and Benke
(1997) pointed out, the semantic representations that are assumed to underlie approxi-
mate calculation versus conceptual number knowledge seem quite different.

The triple-code theory assumes that approximate calculation depends on an ana-
logue representation of number magnitudes. This magnitude representation is as-
sumed to be something like a number line except that it becomes more compressed
for higher numbers, like a logarithmic scale. It is used to represent the magnitude
of numbers, and of the three codes in the model, it is the only one that is thought
to be semantic. Proposals regarding conceptual number knowledge are not as explicit
about the nature of the underlying representation, but descriptions of the knowledge
itself suggest a representation that is more symbolic than could be supported by a
representation of analogue magnitude. For example, it is hard to imagine how an
analogue number line representation could represent the fact that multiplication corre-
sponds to repeated addition.

The distinction between a symbolic/categorical code and an analogue code is a
common theme in the study of human cognition. For example, drawing such a distinc-
tion has been important in explaining aspects of associative memory (Paivio’s [1969,
1971] distinction between symbolic and analogue codes), mental imagery (Kosslyn’s
[1995] distinction between propositional and depictive codes), working memory
(Baddeley’s [1986] distinction between phonological and visuospatial codes), and
spatial relations (Kosslyn et al.’s [1989] distinction between categorical and coordi-
nate codes). In each case, the analogue code corresponds relatively directly to that
which it represents (i.e., the representation and referent are analogous). Analogue
codes are also continuous rather than discrete, and they cannot typically be precisely
described verbally. By contrast, symbolic codes are assumed to consist of symbols
whose meaning is defined arbitrarily; in particular, the representation is not assumed
to resemble the referent directly. Symbolic codes are also discrete rather than continu-
ous, and they are often assumed to be propositional or verbal (and hence easily ver-
balizable).

In this article, we investigate whether a similar distinction exists within the number
processing system—between the representation of symbolic number knowledge, on
the one hand, and that of analogue magnitude information, on the other. Specifically,
are there distinct functional and neuroanatomical systems for processing symbolic
number knowledge versus analogue magnitude information? Current evidence re-
garding this issue is mixed. Cipolotti, Butterworth, and Denes (1991) described a
patient (CG) who could perform a variety of tasks involving the numerosities 1
through 4 but was unable to deal with higher numerosities. The impairment was
apparent in some nonsymbolic magnitude tasks (e.g., comparing the numerosity of
dot patterns, ordering dot patterns according to numerosity) as well as tasks that
tapped higher level symbolic number knowledge (e.g., How many days in a week?
How many eggs in a dozen?). This pattern of results is consistent with the hypothesis
of a unitary system for dealing with symbolic number knowledge and magnitude
information. Similarly, patient MAR (Dehaene & Cohen, 1997), whose ability to
process magnitudes and approximate quantities was severely impaired, also exhibited
deficits in answering questions that tapped symbolic number knowledge such as the
number of days in a year.

On the other hand, some aspects of these patients’ behavior suggest a possible
dissociation between symbolic number knowledge and the ability to process analogue
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quantity information. For example, patient CG was still able to perform size judgment
tasks (e.g., given pictures of familiar objects, choose the one that is biggest in real
life) despite her profound deficit in number knowledge (Cipolotti et al., 1991). Simi-
larly, patient MAR, who was severely impaired in tasks requiring an appreciation
of magnitude, exhibited relatively preserved knowledge of famous numbers (504 5
Peugeot, 1798 5 French Revolution), of time, and of parity (Dehaene & Cohen,
1997). Delazer and Butterworth (1997) described a patient (SE) who was impaired
on tasks requiring an appreciation of the cardinality of numbers (perhaps the most
basic kind of symbolic number knowledge) but was able to compare the numerosity
of dot arrays and sort them in series (a task that, as the authors noted, could be done
without understanding the cardinality of numbers).

In this article, we describe a patient (MC) who exhibits a clear dissociation between
these two types of semantic representations. MC displays a profound impairment in
a variety of tasks that require symbolic number knowledge: naming numbers or other
mathematical symbols, understanding rounding, dealing with clocks and time, and
performing tasks that require an understanding of Arabic numbers. Nevertheless, her
ability to represent and process analogue magnitude information is relatively pre-
served. To illustrate this dissociation between symbolic number knowledge and ana-
logue magnitude information, we attempt to demonstrate three points in this article.
First, MC is impaired on a wide range of tasks that involve symbolic number knowl-
edge. Second, MC is not impaired on tasks that involve analogue magnitude informa-
tion. Third, MC is not impaired on tasks that involve symbolic knowledge in other
semantic categories (other than quantities). We begin by briefly describing the pa-
tient’s history. We then present experimental tests that were designed to address each
of the three points above. Many of the tasks were based on tests administered to
patient CG (Cipolotti et al., 1991) that had been designed to demonstrate a category-
specific semantic deficit in the number domain. Our findings are consistent with the
hypothesis that symbolic number knowledge is a functionally independent component
of the number processing system. They also suggest that symbolic number knowledge
is category specific and that it is anatomically and functionally distinct from analogue
magnitude representations.

CASE HISTORY

MC is a 65-year-old right-handed female. She achieved a high school education
and an electronics trade school degree in keypunch operation. Before she retired,
MC worked at an electronics firm and worked with numbers and equations on a
frequent basis. There is no reason to suspect an abnormal premorbid difficulty with
numbers and mathematics. MC suffered a left hemisphere ischemic stroke on June
26, 1997. Magnetic resonance imaging revealed a small lesion in the subcortical
white matter beneath the supramarginal and postcentral gyri of the left parietal lobe.
The lesion extended far enough inferior to potentially involve white matter tracts of
the superior temporal gyrus as well. Diffusion-weighted magnetic resonance imaging
confirmed the acuity of the stroke (Fig. 1). A neurological examination was conducted
on July 8, 1997, or 2 weeks after her initial stroke. She was only mildly aphasic,
and her performance on all tests but the calculation test in the Neurobehavioral Cogni-
tive Status Examination was in the normal to mildly impaired range. On the calcula-
tion test, MC was severely impaired to the point where she failed to answer any of
the questions correctly. MC’s language comprehension and production skills, both
spoken and written, were only mildly impaired. On the Boston Diagnostic Aphasia
Battery, her performance was in the normal range for all tests except the word dis-
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FIG. 1. Axial fluid attenuated inversion recovery (left) and axial T2-weighted (right) magnetic reso-
nance imaging scans showing an area of increased signal consistent with an ischemic stroke in the
subcortical white matter beneath the supramarginal and postcentral gyri of the left parietal lobe.

crimination test of the auditory comprehension section and the oral agility test of the
oral expression section, both of which were mildly impaired. Aside from her number
processing deficits, MC did not exhibit any of the other symptoms associated with
Gerstmann’s syndrome (e.g., left–right disorientation, finger agnosia, agraphia).

MC was tested on three occasions: July 9, 1997; May 4, 1998; and June 9, 1998.
In all three sessions, MC was motivated, was cooperative, and worked hard to com-
plete all of the tasks. MC’s behavior was relatively stable across the testing sessions.
Between the first and last testing sessions, MC received extensive therapy encourag-
ing her to increment her way around the number symbols on an analogue clock, and
she learned to map number names and symbols onto positions on the clock. Using
this strategy, she was able to identify/name the numbers 0 to 12 (earlier she could
recognize only 0 and 1). As a result of this therapy, she also developed the ability
to count to 12 (earlier she could count only to 5). Aside from this modest recovery
of function, however, few changes in her behavior were observed across the testing
sessions. In particular, the dissociation between symbolic number knowledge and
analogue magnitude processing was apparent in all testing sessions.

SYMBOLIC NUMBER KNOWLEDGE

We begin by presenting a set of tests that illustrate that MC is impaired across a
wide range of tasks involving symbolic number knowledge. First, we present tests
that assess MC’s basic arithmetic skills (e.g., simple calculations, counting). Then
we describe tests designed to assess MC’s semantic understanding of numbers and
other kinds of symbolic number knowledge. The tests show that the impairment is
not tied to a particular perceptual modality and suggest that MC’s impairment extends
to concepts that are closely related to Arabic numbers (e.g., non-numerical mathemat-
ical symbols, Roman numerals, rounding).
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Tests of Basic Arithmetic Skills

Simple calculations in multiple formats and modalities of presentation. MC was
given a series of 20 cards with Arabic numbers or black dots on them along with
calculation symbols that indicated a particular numerical operation, namely addition
or subtraction, to be performed. She was asked to respond verbally. The numbers
and dots represented single-digit numbers. For example, a card might show four dots
on the left, a plus sign in the middle, and two dots on the right followed by an equal
sign. The numerical version shows ‘‘4 1 2 5 .’’ The addition and subtraction prob-
lems were ones for which most people retrieve memorized facts rather than perform
the calculation (McCloskey et al., 1991): 3 2 2, 5 2 3, 4 2 1, 4 2 4, 3 2 0, 1 1
1, 3 1 3, 4 1 2, 5 1 3, and 4 1 1. The same equations on the cards were then
presented to MC verbally (e.g., ‘‘What is 1 plus 1?’’ ‘‘What is 5 minus 3?’’). MC
was unable to perform any calculation regardless of its form or presentation. She
scored 0/10 for number problems, 0/10 for dot problems, and 0/10 for verbally pre-
sented problems.

Counting. MC was asked to count forward from a given number. She was given
12, 1, 3, 30, and 22 as seed numbers. During the first testing session, MC could start
at 1 and count to 5 but not beyond that. She was completely unable to count starting
at 3, 12, 22, or 30. (As previously noted, she later developed the ability to count
to 12.)

Counting dots and beats. MC was shown a card with black dots on it or listened
(with eyes closed) to a set of auditory beats. The number of dots on a card or of
beats heard for each trial was 1, 2, 3, 8, or 9. MC’s task was to report the number
of dots or beats without using her clock strategy. (Without this instruction, MC would
use her fingers as place keepers and then use them to imagine incrementing around
an analogue clock.) For the visual dots, MC was correct for the trials with 1, 2, and
3 dots but incorrect for the trials with 8 and 9 dots (3/5). For the auditory beats, MC
was correct for the trials with 1 and 2 beats but incorrect for the other three (2/5).

Tests of Semantic Understanding

Number matching and naming. We asked MC to discriminate and name three-
dimensional Arabic numbers by touch as well as sight. In addition, we administered
these visual and tactile tasks for three-dimensional letters. The letters and numbers
were made of raised rubber cutouts from a child’s alphabet puzzle set. MC was pre-
sented with an uppercase letter on her left and was asked to determine which of two
choices of lowercase letters on her right matched it. She was also asked to determine
which of two number choices matched a target number. At the end of each trial, MC
was asked to name the target number or letter. She performed this task both by sight
and by touch (with eyes closed).

MC was 100% accurate in matching visually and tactually presented numbers and
letters. She could also name the letters accurately but exhibited a category-specific
deficit in naming numbers. In the visual conditions, she was able to match 7/7 letters
and 7/7 numbers. She was also able to name 7/7 letters but was able to name only
2/7 numbers (0 and 1). In the tactile conditions, MC matched 7/7 letters and 7/7
numbers. Although she was able to name 7/7 letters using touch alone, she was able
to name only 2/7 numbers (again, the numbers 0 and 1). Her problem with naming
appears to have been due to a problem in recognition rather than a word-finding
difficulty. She claimed no knowledge of the numbers she failed to name, and she
did succeed in naming the 2 she claimed to recognize (0 and 1). However, even for
these 2 numbers, she did not behave normally; she identified 0 by first noting that
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it was a circle (she had learned that a circle was a 0). Similarly, she identified 1 by
first recognizing it as a straight vertical line.

Writing numbers to dictation. MC was asked to write 10 Arabic numbers from
spoken dictation. This test was administered after MC had developed some ability
to deal the numbers 1 to 12 by using an analogue clock, and her performance reflected
this; MC correctly wrote down all 6 single-digit numbers but failed on all 4 of the
multidigit numbers (15, 512, 444, and 987) (6/10).

Number ordering: What comes before or after? MC was first provided with 1
number and then asked what number came before that. She was given 10 different
seed numbers. This test was also administered after MC had recovered some ability
to deal with the numbers 1 to 12 and a similar pattern was observed: She was correct
for all 7 numbers between 2 and 12 but missed the other 3 (7/10). In response to 1,
she said, ‘‘No number comes before 1’’ (despite the fact that she could recognize
and name 0). She also missed 15 and 20. For 15, she answered incorrectly and then
remembered her strategy to cover the 1 with her finger and reasoned, ‘‘If there is a
5, then a 4 comes before it and you then put in a 1.’’ Nonetheless, she did not know
that the number was 14. For the number 20, she guessed 2.

Second, she was provided with a number and asked what number came after that.
Again, she was given 10 different seed numbers. Again, she demonstrated correct
performance on numbers between 1 and 12 and missed double-digit numbers (e.g.,
15, 20) (8/10).

Recognition of mathematical symbols. MC was shown individual mathematical
symbols on index cards (1, 2, 5, %, decimal point, and 4) and was asked to name
them and tell the experimenter what they meant or how they were used. Although
she could name some mathematical symbols (1, 2, and 5), she could not recognize
others (%, decimal point, and 4). She was also unable to indicate how the symbols
she named are used.

Roman numerals and numbers with decimal points. MC was tested to see
whether she could identify Roman numerals and numbers with decimal points. She
failed to identify any of the 10 numbers we presented. She said that she could recog-
nize Roman numerals before her stroke. When presented with numbers with decimal
points, she said that she did not know ‘‘what that dot is.’’

Rounding. Similarly, MC was completely unable to round numbers. When asked
to do so, she complained that she did not understand what rounding meant.

1’s, 10’s, 100’s columns. MC was shown 10 multiple-digit numbers and was
asked to indicate which digits represented the 1’s, 10’s, 100’s, and 1000’s columns
of numbers. MC said that she did not understand the question. She could indicate
which digit was farthest to the left or right but not what the relative position of a
digit among other digits meant.

Cardinal facts: Knowledge of units. MC was asked the following 10 questions
regarding how many units are in a particular measure. How many hours are in a day?
How many halves in a football game? How many days in a year? How many ounces
in a cup? How many feet in a yard? How many eggs in a dozen? How many inches
in a foot? How many centimeters in a meter? How many people on a baseball team?
How many days in a week? MC was able to answer only 1 of the questions and
answered that one only partially; she counted off the days of the week on her fingers
and responded ‘‘the number after 6.’’

Reading the clock. MC was shown an analogue clock on which the hands were
arranged to indicate various times. Two of the times were on the hour, two were
partial hour times, and two were on the quarter and half-hour. This test was adminis-
tered after MC had recovered some ability to deal with the numbers 1 to 12, and she
was indeed able to read the times that were on the hour (3 o’clock and 6 o’clock).
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Thus, she was accurate for 2/6 trials. When the indicated times were not on the hour,
MC read the two numbers separately but was unable to combine them. For example,
she reported ‘‘4’’ and ‘‘9’’ when the clock indicated 4:45, ‘‘2’’ and ‘‘5’’ when the
clock indicated 5:10, ‘‘7’’ and ‘‘3’’ for 7:15, and ‘‘10’’ and ‘‘6’’ for 10:30. When
questioned, she said that she did not know what a half-hour was or how many minutes
made up an hour.

Time calculations. To determine whether MC could use numbers related to time,
we asked her several practical questions that involved time calculation in her every-
day life. If it is now 3:00 p.m. and your meal comes at 5:00 p.m., then how long
will you have to wait for dinner? You have just taken a pain relief pill that lasts for
3 h. If you watch a 2-h movie, will you have to take another pill immediately when
it is over? If you have physical therapy until 10:00 a.m. and speech therapy starts
at 10:30 a.m., then how long a break do you have between them? You have a 15-
min doctor’s appointment at 11:00 a.m. Assuming that your doctor is on time and
that your appointment takes the full 15 min, how long do you have to eat lunch before
your next 12:00 p.m. appointment? MC claimed that she no longer understood times
and was unable to answer any of the questions (0/4 correct). For example, when
asked how long she had to wait for dinner, she replied that dinner just comes when
it comes in the hospital.

Reading and defining number-related words. MC was asked to read and define
number concept words. She was told to give her best guesses. Her responses are
shown in Table 1. MC demonstrated perfect performance reading the words (13/13),
and she clearly still understood the non-numerical semantics of the words (e.g., quar-
ter: ‘‘coin’’; quartet: ‘‘music guys’’), but in only one case did her definition demon-
strate a clear understanding of the numerical information conveyed by the term (twin:
‘‘two kids’’).

Discussion

MC had difficulty with every task we administered that involved symbolic number
knowledge. In addition to being impaired on tasks that required some semantic under-
standing, MC was impaired on basic arithmetic tasks such as fact retrieval and count-
ing. Therefore, she does not exhibit a dissociation between skills and understanding,
a point we return to in the General Discussion. Her knowledge of basic mathematical
concepts (e.g., rounding, 1’s vs 10’s columns in multidigit numbers), and even of

TABLE 1
Definitions of Quantity Words

Word Response

Dozen No idea, no guess
Half Half a gallon
Score Keep score when bowling
Pair Pair of nylons
Gross Yucky
Single I’m single and available
Trio No guess
Quartet Music guys
Twin Had kids, 2 kids
Unit Stereo unit
Quarter Coin
Sextet No guess
Fifth Grade 5
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basic declarative facts involving numbers (e.g., How many hours are in a day? What
does quartet mean?), is severely impaired. Her deficit is clearly not a peripheral per-
ceptual impairment and is not tied to any single perceptual modality. Her difficulty
in answering simple questions that require numbers as answers and the sparseness
of numerical information in her definitions are particularly compelling. Both suggest
a loss of symbolic number knowledge.

APPROXIMATE CALCULATION AND PROCESSING
OF MAGNITUDE INFORMATION

Next, we present a set of tests designed to assess MC’s ability to process analogue
magnitude information. We begin with two tasks that have previously been used to
tap approximate, as opposed to exact, calculation abilities and that are assumed to
require the processing of analogue quantity information: Arabic number magnitude
comparison and the thermometer task (mark the appropriate placement of an Arabic
number on a thermometer) (Dehaene & Cohen, 1991, 1997; Dehaene et al., 1999).
In addition to magnitude processing, however, both of these tasks also require the
translation of Arabic numbers (a symbolic representation) into a magnitude represen-
tation. Consistent with MC’s impairment in symbolic number processing, she exhibits
deficits on these tasks. However, when we assess MC’s ability to perform tasks that
require magnitude processing but do not require the translation of number symbols,
her performance is completely intact.

Tests Involving Arabic Numbers

Arabic number comparison. MC was presented with 20 number pairs (10 single
digit and 10 double digit). Her task was to identify which of the numbers was larger.
Using a laborious counting strategy (by the time of this testing, MC had recovered
the ability to count to 12 and to name the digits up to 12 as a result of her therapy
using clocks), she correctly chose the larger number for all of the single-digit numbers
but said that she could not perform the task for the double-digit number pairs (10/20).
When asked to try, she again tried to apply a counting strategy to one of the two
columns in the double-digit numbers. This worked in 7 of the cases (e.g., when the
10’s column differed and she applied it to the 10’s column) but not in the other 3
(e.g., when she applied it to the 1’s column instead of the 10’s column).

Thermometer test. MC was shown 10 line drawings of a thermometer with 0
labeled at the bottom and 100 labeled at the top (with no marks in between) and was
asked to mark the spot on the thermometer where a particular number should be
placed. The numbers ranged from 1 to 99. Her performance is shown in Fig. 2.
Clearly, MC displayed very poor absolute placement of the numbers. Her placement
of the numbers relative to each other was better, indicating that some magnitude
information may have been getting processed. However, MC’s behavior was quite
abnormal and relied heavily on counting on her fingers (again, by the time of this
testing, MC had recovered the ability to count to 12). For the double-digit numbers,
MC used her fingers to cover up one digit and then counted on her fingers to determine
spatially the magnitude of the remaining number. She also said that she had learned
that two numbers together (i.e., double-digit numbers) are bigger than one number
alone (i.e., single-digit numbers). In short, MC was dramatically impaired on this
task.
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FIG. 2. The placement of individual numbers on a scale of 0 to 100 (thermometer task) by pa-
tient MC.

Tests without Arabic Numbers

Size judgments. MC was shown 60 pairs of pictures taken from the Snodgrass
and Vanderwart (1980) collection. The objects in the pairs were scaled so that the
pictures themselves were the same size. These pairs were separated into categories:
fruits and vegetables, animals, household items, musical instruments, and vehicles.
MC was asked to determine which object in each pair was larger in real life. She
correctly answered all 60 questions.1

Size ordering task. MC was given two sets of five objects from the same pictures
as above. For each set, she was asked to order them according to how large they are
in real life. MC correctly ordered all of the objects in terms of their size.

Comparing perceptual quantities. MC was shown two piles of pennies or pic-
tures of two glasses of water and was asked to point to the pile/glass that had more
pennies/water. MC was 100% accurate (5/5).

Comparing estimated quantities. MC was asked to answer 10 questions that re-
quired comparing the magnitude of imagined quantities. For example, she was asked
questions such as ‘‘Would there be more coffee beans or sugar grains in a cup?’’
MC answered all of these questions quickly and correctly.

1 People are faster to compare the sizes of object pairs that differ substantially in size relative to object
pairs whose sizes are similar (Kerst & Howard, 1977; Moyer, 1973; Moyer & Bayer, 1976). This effect
is typically interpreted as evidence that people use some kind of analogue quantity representation in
making these comparisons.
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Numerosity: Which is more? MC was shown two sets of irregularly sized and
placed dots and was asked which set contained more dots. Each set contained between
two and five dots. The stimuli were designed so that she could not use spatial position
or physical space covered to answer the questions. She was also asked to perform
three Piagetian tasks in which she had to indicate which row of linearly organized
dots (2–5 dots per row) with different amounts of space between them had more dots.
She displayed none of the errors prominent in the performance of young children; size
and spatial arrangements of items did not fool her. She correctly answered 5/5 dot
problems and 3/3 of the Piagetian tasks. She did not try to count and did not require
any special strategies to complete these tasks.

Numerosity: Ordering quantities. MC was given 10 index cards with one to six
irregularly sized and placed dots on them. She was asked to put the cards in order
from left to right, placing the cards with the fewest dots farthest on the left and
progressively placing cards with more dots farther to the right. She was also instructed
to put cards with the same number of dots in the same position. She had no difficulty
performing this task (10/10) and again did not count.

Frequency estimation. MC was read lists of 20 words and was asked to judge the
relative frequency of category exemplars (without explicitly counting the exemplars).
There were two versions of the test, with two lists for each version. In the first and
easier version, she was told the names of the two categories before hearing the list
items: ‘‘You will hear 20 words. Some are names of musical instruments, and some
are names of vegetables. At the end, I want you to tell me whether the list had more
instruments or vegetables. Don’t count [MC gave a big sigh of relief!]; just get a
feel for which occurs more often.’’ There were three times as many exemplars for
the more frequent category in the easy versions (12 instruments vs 4 vegetables [along
with four fillers], 12 clothing items vs 4 flowers [along with four fillers]).

The more difficult version of the task did not specify the categories ahead of time;
she was told to listen to the list of items, and then she would be asked some questions
about it. At the end of the list, she was told that some of the items had been ‘‘category
1’’ and some had been ‘‘category 2’’ and was asked which category had been more
frequent. The more difficult version also involved a more difficult discrimination, as
the ratio of the relevant frequencies was less than 2 (7 fruits vs 4 furniture items
[along with 9 fillers]; 7 body parts vs 4 animals [along with 9 fillers]). Filler items
occupied the first and last position on the list. The last relevant item on a list was
from the most frequent category for one list of each version and from the least fre-
quent category for the other list.

MC performed both the easy and the difficult relative frequency judgments with
ease and correctly judged the more frequent category in all cases.

Discussion

MC is able to process magnitude information so long as the task does not require
symbolic number knowledge. She can deal with continuous analogue quantities (e.g.,
size) despite her difficulty with tasks that require symbolic knowledge about numbers
and related concepts. By contrast, any task that requires an understanding of Arabic
numbers or number words is difficult for MC. For example, in tasks that tap approxi-
mate calculation but require the translation of Arabic numbers into magnitude repre-
sentations (including number comparison and the thermometer task), MC is impaired.
Although her performance suggested that some magnitude information might be get-
ting through, her strategy and performance were very abnormal. It is only when an
understanding of number symbols is not required (e.g., frequency estimations, com-
paring the numerosity of dot patterns) that MC performs well. Even when the stimuli
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were discrete (e.g., dots, category exemplars), MC did not count but rather appeared
to adopt a more analogue approximate representation of the quantity of dots or the
frequency of category exemplars.

PRESERVED PROCESSING OF OTHER SEMANTIC CATEGORIES

Finally, we present a set of tests designed to assess MC’s ability to process informa-
tion from semantic categories that are not directly related to numbers. The processing
of non-numeric semantic categories in patients with conceptual number deficits has
rarely been systematically tested, but the current evidence favors category specificity.
For example, patient CG, who exhibited a profound deficit in conceptual number
knowledge for numerosities above 4, was relatively normal on a number of tasks
tapping semantic knowledge of other categories (e.g., verbal fluency, picture naming,
synonyms) (Cipolotti et al., 1991). She did, however, exhibit some problems with
word definitions (20%–30% errors) and was quite impaired on tests of non-numeric
ordinal structure (e.g., the alphabet, days of the week, months of the year). This
patient also exhibited other behavioral deficits in addition to her problems with num-
bers (e.g., spatial deficits, body schema deficits, other impairments associated with
Gerstmann’s syndrome). It is therefore possible that an impairment in some more
general cognitive system (e.g., spatial processing) played a role in some of her num-
ber processing problems. By contrast, MC did not exhibit any impairments in tasks
tapping other semantic categories, including tests of ordinal structure, and she also
did not suffer from any other problems associated with Gerstmann’s syndrome.

Tests

Object discrimination for different semantic categories. MC was able to point
to 60/60 pictures of items from seven different semantic categories (animals, fruits,
vegetables, body parts, musical instruments, vehicles, and household objects).

Naming common objects. MC named 19/20 line drawings of common objects
selected from the Snodgrass and Vanderwart (1980) collection; her 1 error was mis-
taking an apple for a cherry. She also named 60/60 pictures of items from seven
different semantic categories.

Generation of non-numerical sequences (ordinal information). MC could cor-
rectly recite the days in a week (7), the months of the year (12), and the alphabet
(26). By contrast, at the time this test was administered, she was able to count only
to 5 and was completely unable to count forward by 5’s and 10’s.

Event ordering. MC answered quickly and correctly 15 questions about what
item followed a given day, month, or letter.

Temporal ordering. MC was given five pairs of famous people names. She was
asked to indicate who was born first (e.g., Abraham Lincoln or George Washington).
She answered all five questions correctly.

Linear ordering. MC was given five linear ordering problems (e.g., If Bill is
taller than John, and John is taller than Susie, then who is shortest?). MC answered
4/5 correctly.

Generation of words from designated semantic categories. In a verbal fluency
task, MC was asked to name as many fruits as possible in 60 s. Similarly, she was
asked to name as many vegetables and as many animals as possible. She produced
an average of 12 items per category, which is within the normal range.
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Defining concrete and abstract words of different frequency. MC was asked to
define 10 high-frequency concrete words, 10 low-frequency concrete words, 5 high-
frequency abstract words, and 5 low-frequency abstract words. MC correctly defined
all of the words.

Identifying synonyms. MC correctly identified all of the pairs of synonyms from
a list of 48 word pairs.

Discussion

In contrast to her dramatic impairments on tasks involving symbolic number
knowledge, MC exhibited normal performance with tasks involving other semantic
categories. She recognized and named items from a variety of non-numerical catego-
ries, she correctly recited non-numerical sequences, she made judgments based on
sequential order, and she easily retrieved and processed the semantics of all the non-
numerical words we tested. In many cases, MC exhibited dramatic impairments on
these very same tasks when they involved number concepts. Based on these results,
it appears that MC’s deficit is category specific; that is, it affects numbers and related
concepts but not other semantic categories.

GENERAL DISCUSSION

Based on MC’s pattern of impaired and preserved performance, we would charac-
terize her deficit as an impairment in symbolic number knowledge. Table 2 presents a
summary of the results of the experimental tests. Her ability to recognize, understand,
define, retrieve, and manipulate symbolic number information is severely compro-
mised, while other cognitive functions are relatively well preserved. The impairment
is multimodal, being manifest whether the tests are visual, auditory, or tactile. It
appears to be a deficit in semantic knowledge, but it extends to arithmetic skills as
well. In contrast to her severe deficit in performing tasks that involve symbolic num-
ber knowledge, MC shows relatively normal performance in processing nonsymbolic
analogue quantities. Finally, MC’s impairments are specific to numbers and related
concepts and do not extend to any other semantic domains that we have tested.

Symbolic Number Knowledge versus Analogue Magnitude Information

Previous patients exhibiting semantic number deficits have typically been charac-
terized either as being impaired in approximate calculation (Dehaene & Cohen, 1997;
Dehaene et al., 1999) or as being impaired in conceptual number knowledge (Cipo-
lotti et al., 1991; Delazer & Benke, 1997; Warrington, 1982; Weddell & Davidoff,
1991). The relationship between these two characterizations, however, is unclear.
Do approximate calculation and conceptual number knowledge depend on a unitary
component of the number processing architecture, or do analogue magnitude informa-
tion and symbolic number knowledge depend on partially distinct systems? MC’s
case makes clear that the two types of semantic information can be dissociated. De-
spite her profound impairment in symbolic number knowledge, her ability to process
analogue magnitude information is intact.

Current models of the functional architecture of number processing do not yet
distinguish between these two types of semantic number information. For example,
the modular model of number processing (McCloskey, 1992; McCloskey et al., 1985)
assumes a unitary abstract representation of number meaning that is assumed to un-
derlie all arithmetic operations and number transcoding tasks. Although the triple-
code theory proposes that different operations depend on different numeric codes



NUMBER KNOWLEDGE AND MAGNITUDE 559

TABLE 2
Summary of MC’s Performance across a Set of Experimental Tasks

Experimental task Performance

Tasks requiring symbolic number knowledge
Simple calculations Impaired (0/9 Arabic numbers, 0/9 dots, 0/9

verbal)
Counting Impaired (1–5 but not beyond, only from 1)
Counting dots and beats Impaired (3/5 dots, 2/5 beats)
Number naming Impaired (2/7 both by vision and touch)
Writing numbers to dictation Impaired (6/10 but only below 12)
Before/after numbers Impaired (15/20 but only below 12)
Mathematical symbols Impaired (named 3/6, defined 0/6)
Roman numerals Impaired (0/10)
Rounding Impaired (0/10)
1’s, 10’s, and 100’s columns Impaired (0/10)
Cardinal facts Impaired (1/10)
Reading a clock Impaired (2/6)
Time calculations Impaired (0/4)
Defining number-related words Impaired (see Table 1)

Magnitude tasks involving arabic numbers
Arabic number comparison Impaired (10/20 with abnormal strategy)
Thermometer test Impaired (see Fig. 2)

Magnitude tasks without arabic numbers
Size judgments Normal range (60/60)
Size ordering Normal range (10/10)
Comparing perceptual quantities Normal range (5/5)
Comparing estimated quantities Normal range (10/10)
Dot numerosity comparisons Normal range (8/8)
Ordering dot numerosities Normal range (10/10)
Frequency comparison Normal range (4/4)

Tasks requiring non-numeric symbolic knowledge
Pointing to pictures Normal range (60/60)
Naming common objects Normal range (19/20)
Non-numeric sequences: Generation Normal range (weekdays, alphabet, months)
Non-numeric sequences: Next item Normal range (15/15)
Temporal ordering Normal range (5/5)
Linear syllogisms Normal range? (4/5)
Verbal fluency Normal range (12 items/min)
Word definitions Normal range (30/30)
Synonym identification Normal range (48/48)

(e.g., a verbal code for memorized multiplication problems, a magnitude code for
Arabic number comparison), only one of these codes (the analogue magnitude code)
is assumed to represent semantic information about numbers (Dehaene, 1992; De-
haene & Cohen, 1991, 1995, 1997). MC’s case suggests that a distinction should be
drawn between symbolic number knowledge and analogue magnitude information.

This dissociation between symbolic and analogue information also suggests that
a distinction should be drawn between different kinds of approximation/magnitude
tasks. In some of these tasks, the analogue magnitude information is reflected explic-
itly in the stimuli themselves, whereas in others, a number symbol must first be
translated into a magnitude code. For example, when comparing the amount of water
in two glasses, the magnitude information is reflected explicitly in the stimulus, and
there is no need to translate from an arbitrary symbol (e.g., a number) into the magni-
tude code. Similarly, when comparing the numerosity of dot patterns or the frequency
of occurrence of different events, the translation of an arbitrary symbol into the mag-
nitude code is not required. Other approximation/magnitude tasks, however, do re-
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quire such a translation (in addition to the ability to represent and manipulate magni-
tudes). For example, comparing the magnitude of two Arabic numbers clearly
requires translating the number symbols into a magnitude representation. Similarly,
marking the appropriate location of an Arabic number on a magnitude scale (e.g.,
mark the approximate location of 82 on a line that runs from 0 to 100) also requires
translating the Arabic number into a magnitude representation. These kinds of tasks
are prototypical approximate calculation tasks and have been shown to dissociate
from exact calculation tasks (Dehaene & Cohen, 1991, 1997). Nevertheless, we pro-
pose that such tasks do require some symbolic number knowledge and should there-
fore dissociate from more pure magnitude tasks that do not require the translation
of number symbols. Consistent with this assumption, MC is more impaired on such
tasks than on the pure magnitude tests described previously, although there is some
evidence that some magnitude information can still be used.

The distinction between analogue magnitude information and symbolic number
knowledge may reflect a distinction between innate and learned representations in
the number system (Dehaene, 1997). Dehaene, Dehaene-Lambertz, and Cohen (1998)
presented evidence that preverbal infants, as well as many nonhuman animals, pos-
sess a biologically determined, domain-specific representation that can be used to
perceive, discriminate, and manipulate small quantities. For example, if infants are
shown a sequence of dot patterns, all of which have the same numerosity (say, 2),
and are then shown a pattern with a different numerosity (say, 3), they will look at
the new pattern longer than they will look at a pattern in which the numerosity was
not changed (Starkey & Cooper, 1980). Similarly, infants are able to discriminate
different numbers of syllables (Bijeljac-Babic, Bertoncini, & Mehler, 1993) and vi-
sual actions (Wynn, 1996). Nonhuman animals have been shown to possess similar
abilities (Davis & Perusse, 1988; Gallistel & Gelman, 1992). These abilities are typi-
cally assumed to depend on an analogue magnitude representation like that hypothe-
sized to be intact in patient MC (Dehaene et al., 1998; Gallistel & Gelman, 1992).
By contrast, knowledge of Arabic numbers and other types of symbolic number
knowledge is not innate and can be acquired only through extensive training. And
tasks that depend on symbolic number knowledge, like those impaired in MC, cannot
be spontaneously performed by preverbal infants or nonhuman animals (although
nonhuman animals have been shown to be able to perform some tasks involving
Arabic numbers [Matsuzawa, 1985; Washburn & Rumbaugh, 1991], such behavior
requires extensive training). In short, evidence suggests that the ability to represent
and manipulate analogue magnitude information is genetically predetermined,
whereas symbolic number knowledge requires systematic training to develop. MC’s
dissociation between symbolic number knowledge and analogue magnitude informa-
tion may therefore reflect a dissociation between learned number representations
(symbolic number knowledge) and number representations that are genetically prede-
termined (analogue magnitude information).

Relationship to Previous Neuropsychological Work

Of the previously reported cases of acalculia, MC is probably most similar to pa-
tient CG (Cipolotti et al., 1991). CG also exhibited a selective impairment in tasks
requiring number knowledge, the impairment was multimodal, and the category of
numbers was disproportionately impaired. An NMR scan on CG revealed an area of
left fronto-parietal hypodensity. This lesion was more extensive than MC’s but may
well have included areas damaged in MC.

There are a number of important differences, however, between MC and CG. For
example, CG exhibited impairments on some magnitude tasks on which MC was
preserved. She had difficulty comparing the numerosity of dot patterns and sorting
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dot patterns according to numerosity. CG was also impaired on word definitions and
tests of non-numeric ordinal structure (e.g., days of the week, alphabet), tasks on
which MC performed well. Cipolotti et al. (1991) distinguished ways in which CG’s
problems with non-numeric sequences were different from her problems with num-
bers. MC’s case demonstrates that the two deficits can indeed be dissociated. Further-
more, CG exhibited the classical signs of Gerstmann’s syndrome—finger agnosia,
left–right disorientation, and agraphia—in addition to her acalculia, and she was also
profoundly alexic. MC did not exhibit any of these other problems (presumably due
to her more restricted lesion), and her case therefore makes clear that these other
neurological deficits can be dissociated from the symbolic number knowledge impair-
ment.

It is also worth discussing MC’s case in light of the dissociation between concep-
tual knowledge and arithmetic skills. Although MC shows a clear conceptual deficit,
she is also impaired in basic arithmetic skills (e.g., counting, arithmetic fact retrieval)
that are known to dissociate from conceptual deficits (Delazer & Benke, 1997;
Hittmair-Delazer et al., 1994, 1995). The term symbolic number knowledge is there-
fore meant to include, but not be limited to, conceptual number knowledge. Similarly,
symbolic number knowledge is not meant to refer exclusively to a knowledge of
number symbols. Rather, it is meant to refer to any kind of symbolic knowledge
related to numbers (e.g., knowledge of rounding, of what a quartet is, and of what
a decimal point means).

Perhaps MC’s behavior reflects two separate and independent underlying deficits:
one in practiced skills and another in conceptual knowledge. One problem with this
interpretation is that both deficits appear to be specific to the category of numbers.
For example, she was not impaired in reciting days of the week or months of the
year (practiced skills) and was also able to define concepts from a variety of non-
numeric semantic categories (conceptual knowledge). One would therefore need to
assume that two separate lesions both affected number information selectively, one
impairing symbolic number knowledge and another impairing practiced number
skills. The idea that two independent lesions would happen to impair exactly the
same category of information is obviously exceedingly unlikely. A more parsimoni-
ous interpretation is that even practiced number skills make some demands on sym-
bolic number knowledge and that when the system underlying that knowledge is
extensively damaged, it can affect practiced number skills as well.

MC’s case also provides perhaps the strongest evidence to date that symbolic
knowledge about numbers is dissociable from symbolic knowledge about other se-
mantic categories. In keeping with previous studies suggesting that impairments in
number knowledge (Cipolotti et al., 1991) can doubly dissociate from impairments
in knowledge of other semantic categories (Thioux et al., 1998), MC’s number im-
pairments did not extend to any other semantic categories that we tested. The dissocia-
tion in MC was particularly clear in that her deficit did not even affect ordinal struc-
tures in other domains (e.g., alphabet, days of the week) and was present despite the
lack of any spatial deficits or other symptoms of Gerstmann’s syndrome. Her case
therefore strongly suggests that number knowledge itself can indeed be selectively
impaired, independent of other more general cognitive systems on which number
processing might rely. This interpretation is consistent with the more general hypoth-
esis that semantic memory includes a component devoted to numbers. Whether this
component responds to the number category itself or to some feature that is typically
associated with numbers (e.g., their abstractness) remains to be tested.

Finally, MC’s case has implications for hypotheses regarding number processing
in the right hemisphere. There is evidence that the right hemisphere is capable of a
fair amount of number processing, including recognizing Arabic numbers and com-
paring their magnitude (Dehaene & Cohen, 1995). For example, these tasks are often
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preserved in patients with extensive left hemisphere damage (Dehaene & Cohen,
1991; Grafman, Kampen, Rosenberg, Salazar, & Boller, 1989) and in the right hemi-
sphere of split-brain patients (Cohen & Dehaene, 1996; Seymour, Reuter-Lorenz, &
Gazzaniga, 1994). In keeping with these findings, the triple-code theory of number
processing assumes that the right hemisphere is capable of a variety of tasks that do
not require use of the verbal code such as recognizing and comparing Arabic numbers
(Dehaene & Cohen, 1995). Nevertheless, MC exhibited impairments on such tasks
despite the fact that her lesion was strictly lateralized to the left hemisphere. Patient
CG, who also suffered from a left lateralized lesion, also exhibited impairments on
these tasks (Cipolotti et al., 1991). These discrepancies raise the possibility that the
number processing capabilities of the right hemisphere differ across individuals and
that the triple-code theory’s assumption of right hemisphere number processing is
correct only in some individuals. Individual differences in performance on these tasks
could result from reorganization following damage or simply reflect variability that is
present in the normal population. An alternative possibility is that the left hemisphere
partially inhibits number processing in the right hemisphere and that significant left
hemisphere damage (or commisurotomy) therefore disinhibits number processing in
the right hemisphere. According to this interpretation, the smaller left hemisphere
lesions in MC and CG may have spared the inhibition of right hemisphere number
processing, thereby undermining the right hemisphere’s ability to display its real
number processing abilities. Such an interpretation could potentially reconcile MC
and CG’s impairments with the triple-code theory’s assumption of right hemisphere
number processing.

To summarize, the major conclusion that we draw based on patient MC’s perfor-
mance is that there is a dissociation between symbolic number knowledge and ana-
logue magnitude information. This dissociation has important implications for the
functional organization of number processing in the brain but is not yet reflected in
current theories of number processing.
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