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Abstract

Shape derivatives and topological derivatives have been incorporated into level set
methods to investigate shape optimization problems. The shape derivative measures
the sensitivity of boundary perturbations while the topological derivative measures
the sensitivity of creating a small hole in the interior domain. The combination of
these two derivatives yields an efficient algorithm which has more flexibility in shape
changing and may escape from a local optimal. Examples on finding the optimal
shapes for maximal band gaps in photonic crystal and acoustic drum problems are
demonstrated.
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1 Introduction

Shape optimization arises in many different fields, such as mechanical design
and shape reconstruction. It can be generally described as a problem of finding
the optimal shapes in a certain sense with certain constraints. One of the
well-known problems is to find the shape of a bubble which minimize the
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surface tension or surface area with a fixed volume. The answer is a sphere.
Nowadays shape optimization problems with P.D.E. constraints are under
extensive study.

One of the difficulties in shape optimization problems is that the topology of
the optimal shape is unknown. Developing numerical techniques which can
handle topology changes becomes essential for shape optimization problems.
The level set method introduced in [19] has been well known for handling
topology changes, such as breaking one component into two, merging two
components into one and forming sharp corners. Therefore it has been used
naturally to study shape optimization problems. Instead of using the physi-
cally driven velocity, the level set method typically moves the surfaces by the
gradient flow of an energy functional. Previously this gradient flow was com-
puted based on shape derivatives. These approaches based on shape sensitivity
include the boundary design of elastic structures in [20], the shape design for
drums having certain properties on frequencies in [18] and the shape design
for photonic crystals having maximum band gaps in [14].

However, as pointed out in [2,3], the level set approach based on the shape
sensitivity may get stuck at shapes with fewer holes than the optimal geom-
etry in some applications to structure designs. Several works [7,27,1,6] have
addressed this issue by a modified level set method that includes the topolog-
ical derivative. This derivative measures the influence of creating a small hole
in the interior domain. Particularly we follow the work done by Burger et al.
[7], where they have applied this new approach to a rather simple example:
the minimization of a least squares functional. Thus the main purpose of our
paper is to generalize their approach to any objective functional by assuming
some continuity conditions of the objective functional.

The remainder of the paper is organized as follows: In Section 2 and Section 3,
the shape derivative and the topological derivative are introduced respectively.
In Section 4, the level set method is studied to evolve the shape based on shape
derivative and/or topological derivative. In Section 5, we show the numerical
results for the shape design of drums and photonic crystals. We conclude with
an appendix.

2 Shape Derivatives

Shape derivatives measure the sensitivity of boundary perturbations. In the
framework of Murat-Simon [15,23], it is defined as the following. Let Ω ∈
D ⊂ RN be a reference domain. Consider the perturbation under the map
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θ ∈ W 1,∞(RN , RN) s.t. ||θ||W 1,∞ < 1:

Ωθ = (I + θ)Ω,

where I is the identity map. The set Ωθ is defined as

Ωθ = {x + θ(x) | x ∈ Ω}.

The shape derivative of an objective shape functional, F : RN → R, at Ω is
defined as the Frechet differential of θ → F(Ωθ) at 0. θ can be viewed as a
vector field advecting the reference domain Ω. The shape derivative dSF(Ω)(θ)
depends only on θ · n on the boundary ∂Ω because the shape of Ω does not
change at all if θ is lying on the tangential direction of the domain Ω.

For an objective functional that is the integral on the volume of Ω or along the
boundary of Ω, the following formula can be easily obtained. If Ω is a smooth
bounded open set, f(x) ∈ W 1,1(RN), and

F(Ω) =
∫

Ω

f(x)dx,

the shape derivative is

dSF(Ω)(θ) =
∫

Ω

∇ · (θ(x)f(x)) =
∫

∂Ω

θ(x) · n(x)f(x)ds. (1)

If Ω is a smooth bounded open set, f(x) ∈ W 2,1(RN), and

F(Ω) =
∫

∂Ω

f(x)dx,

the shape derivative is

dSF(Ω)(θ) =
∫

∂Ω

θ(x) · n(x)(
∂f

∂n
+ Hf)ds, (2)

where H is the mean curvature of ∂Ω defined by H = ∇ · n. These two
formulas indicate that the shape derivative depends only on the boundary
when the objective functional is a volume integral and the curvature plays a
role when the objective functional is a surface integral.
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After the shape derivative is computed, the gradient flow can be chosen to
optimize the objective functional. Suppose the shape derivative is

dSF(Ω)(θ) =
∫

∂Ω

θ(x) · n(x)W (Ω)(x)ds, (3)

to maximize the objective functional F(Ω), we choose the gradient flow as

θ(x) = W (Ω)(x)n(x).

This means that the normal velocity of the shape is W (Ω)(x). When we use
the zero level set of function φ to represent the boundary of Ω, the motion
under the normal velocity W (Ω)(x) is simply [19,18,17]

φt + W (Ω)(x)|∇φ| = 0. (4)

Notice that the shape derivative in (3) is only defined on the boundary ∂Ω,
however under the level set framework it has to be defined on the whole domain
D. In the case that the shape derivative functional is originally defined on D,
for example, the shape derivative from (1) and (2), we can just naturally
extend it to D (cf. [18]). There are alternative means to extend the normal
velocity W (Ω)(x) on the zero level set to D, such as the method outlined in
[9,28]. Here we only consider the first case.

3 Topological Derivatives

While the shape derivative is defined on local perturbations of the boundary
of the domain Ω, the topological derivative measures the influence of creating
small holes at a certain point. The idea of the topological derivative is to create
a small ball Bρ,x with center x and radius ρ inside/outside the domain Ω and
then consider the variation of the objective functional F with respect to the
volume of this small ball. For x ∈ Ω, the topological derivative dTF(Ω)(x) is
defined as the limit (if it exists)

dTF(Ω)(x) := lim
ρ→0

F(Ωρ,x)−F(Ω)

|Bρ,x
⋂

Ω| , (5)

where Ωρ,x = Ω − B(ρ, x). This definition is to subtract material at x ∈ Ω.
However, in some situations, it is reasonable to add material at x ∈ D−Ω. In
that case, the “set-minus” must be replaced by “union” in equation (5). For
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the sake of simplicity, we will only deal with the “set-minus” case and draw
conclusions on the “union” case by analogy.

There does exist objective functionals which are not topological differentiable.
For example,

dT |∂Ω| = lim
ρ→0

|∂Bρ,x|
|Bρ,x| ' lim

ρ→0

ρN−1

ρN
= ∞. (6)

When the topological derivative does exist, by Taylor expansion we naturally
have F (Ωρ,x) = F (Ω) + CNρNdTF(Ω)(x) + o(ρN) (cf. [22]), where CN is a
constant, related with the volume of the N dimensional ball. In this paper we
focus on the case where N = 2 and furthermore we assume that F (Ωρ,x) ∈
C2(R,R) with respect to ρ for small ρ.

The topological derivative is defined on the situation where a small hole is
created at some certain point. However from the analytical point of view, we
think the change of the topology happens continuously. Thus we can relate it
with the shape change. Specifically, for x ∈ Ω, assuming a hole with radius
δ is created already, we consider the shape change from Ωδ,x to Ωρ,x, where
0 < δ < ρ. And if we let δ → 0, then this is exactly the definition of the
topological derivative.

The shape change from Ωδ,x to Ωρ,x corresponds to the velocity θ = −n and
dt = ρ− δ. Based on the central difference scheme for any C2(R,R) functional
E(ρ):

E(ρ)− E(δ) = (ρ− δ)E ′(
ρ + δ

2
) + O((ρ− δ)3),

and applying the shape derivative given by (3), the topological derivative is
computed as the following:

lim
ρ→0

F(Ωρ,x)−F(Ω)

|Bρ,x
⋂

Ω| = lim
ρ→0

lim
δ→0

F(Ωρ,x)−F(Ωδ,x)

|Bρ,x
⋂

(Ω−Bδ,x)|
(7)
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= lim
ρ→0

lim
δ→0

(ρ− δ)
∫
∂B δ+ρ

2 ,x

−W (Ω δ+ρ
2

,x)(y) n · nds + O((ρ− δ)3)

πρ2 − πδ2

= lim
ρ→0

lim
δ→0

∫
∂B δ+ρ

2 ,x

−W (Ω δ+ρ
2

,x)(y) ds

π(δ + ρ)
+ lim

ρ→0
lim
δ→0

O((ρ− δ)2)

ρ + δ

= lim
ρ→0

∫
∂Bρ,x

W (Ωρ,x)(x)−W (Ωρ,x)(y) ds

2πρ
− lim

ρ→0

∫
∂Bρ,x

W (Ωρ,x)(x) ds

2πρ

= − lim
ρ→0

W (Ωρ,x)(x)

= −W (Ω)(x).

(8)

The second to last equivalence requires the Lipschitz continuity of W (Ωρ,x)(y)
with respect to y. And the last equivalence requires the continuity of W (Ωρ,x(x))
with respect to ρ at ρ = 0. As we mentioned before, it is by natural extension
that W (Ω)(y) is defined on the interior point x ∈ Ω. In practice we have to
verify these two requirements before we carry on any further actions. Due to
the similarity of our both numerical examples, we will only verify the require-
ments for the photonic crystal case, see Section 5.1.

By similar deduction for the “union” case, we obtain the topological derivative
of the objective functional F based on a domain Ω

dTF(Ω)(x) =




−W (Ω)(x) when x ∈ Ω

W (Ω)(x) when x ∈ D − Ω.
(9)

We mark that it might not be easy to compute the shape derivative of the
objective functional F(Ω). However the purpose of this paper is to incorporate
the topological derivative into the standard level set method, which is based
on that the information of the shape derivative is known already. For explicit
computations of topological derivatives in shape optimization, etc., we refer
to [22,11,16,27,13,5,1].

We also want to draw attention to the use of the central difference scheme. It
is important for our proof to focus on a two dimensional case. Unfortunately,
a similar proof can not be obtained for the case where N > 2. Other means
have to be sought.
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4 Incorporating shape and topological derivatives into the level set
method

In some applications to structural design it is observed that the shape deriva-
tive based level set method could be trapped in a local optimum with fewer
holes than the “real” optimal geometry. Therefore it is necessary to find some
additional forces to generate holes. Here we will try to add a term dependent
on the topological derivative to the level set equation. Based on the standard
level set equation (4), the new equation is formulated as

φt + W |∇φ|+ ωG = 0, (10)

where ω is a positive parameter which balances the influence of the additional
force term G.

In order to maximize the objective functional F , we do the following reasoning
to choose the source term G:

• If φ(x, t) < 0 and dTF(Ω)(x, t) > 0, then it is favorable to generate a hole
at x which means the value of φ should increase.

• If φ(x, t) < 0 and dTF(Ω)(x, t) < 0, then the value of φ should not increase
since it is not favorable to generate holes.

• If φ(x, t) > 0 and dTF(Ω)(x, t) < 0, then it’s not favorable to add material
and thus the value of φ(x, t) should not decrease.

• If φ(x, t) > 0 and dTF(Ω)(x, t) > 0, then it’s favorable to add material
which means the value of φ should decrease.

To simplify the study of the movement of the level set towards zero, we assume
that this movement is under the influence of the topological derivative only.
Then

φt = −ωG. (11)

The term W |∇φ| is ignored for the moment. Thus the choice of G will have
to satisfy

G(x, t)





< 0, if φ(x, t)dTF(Ω)(x, t) < 0

> 0, if φ(x, t)dTF(Ω)(x, t) > 0.

(12)

Following [7], we also choose to use G(x, t) = sign(φ(x, t))dTF(Ω)(x, t). The
scale of G is dependent on the topological derivative dTF(Ω) only. But the
sign of G is dependent on not only dTF(Ω) but also sign(φ), which is decided
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by the location of the point x relative to the zero level set of φ. From the
deducted expression of the topological derivative (9), we obtain G = W . Thus
the equation (10) becomes

φt = −W (|∇φ|+ ω). (13)

The sign of the velocity W decides the movement of φ towards or away from
the zero level set. Also the speed of this movement is determined by the
magnitude of the gradient of φ and the extra constant ω. As we can see, when
the zero level set is flat or the point is far away from the boundary, the force
induced by this magnitude term |∇φ| would be very small. This is when the
force generated by ω makes the main contribution to help the movement not
get stuck in a local optimum and to expedite the maximization of the cost
functional, to finally reach an optimal shape Ω0 which φ(x, t)W (Ω0)(x, t) ≤ 0
for any x ∈ D (For detailed explanation, see the Appendix A or [7]).

In our numerical experiments, we have tried a variation of (13) which has the
form

φt = −W. (14)

This equation is related to the work [12] done by Gibou and Fedkiw on seg-
mentation problems. The main part of their idea can be simplified as follows:
suppose the level set equation is given by φt = −W , they update φ by the
sign of W :

φ =




−1 if W > 0

1 if W ≤ 0.
(15)

However, we choose a different algorithm to update φ, see Appendix B. More-
over, we can interpret the equation (14) as the propagation of φ is driven only
by the force of topology changes.

We note that if we reinitialize [21,25] the level set function after every iteration,
we obtain |∇φ(x)| = 1, which results the equations (4), (13) and (14) are
equivalent to each other. Thus incorporating the topological derivative into
the level set method can also be treated as the reinitialization process after
every iteration, which could be quite expensive if the level set function is far
away from the signed distance function. However the equivalent relationship
between incorporating the topological derivative into the level set method and
the reinitialization is only true if we extend the normal velocity on the zero
level set to the whole domain naturally by the velocity functional W (Ω)(x). If
we extend the velocity of the zero level set differently, for example, a constant

8



extension along the normal direction, then adding the reinitialization step
when solving (4) can possibly generate wrong holes.

5 Numerical Results

To demonstrate the improvements obtained by incorporating the topologi-
cal derivative in addition to the shape derivative into the standard level set
method, we performed numerical experiments on two models. One is to max-
imize the band gap of photonic crystals (cf. [14]) which involves solving a
simplified Maxwell’s equation. The other is to maximize the spectral gap of
an inhomogeneous drum with two different densities (cf. [18]) by solving an
eigenvalue problem subject to the mass constraint. The extensive numerical
work provides compelling evidence that incorporating the topological deriva-
tive into the standard level set method is a powerful approach to optimal
design.

5.1 The Photonic Crystal Problem

Photonic crystals are periodic structures composed of dielectric material and
designed to exhibit band gaps, i.e., range of frequencies in which electromag-
netic waves cannot propagate. In [10,14] and etc, the problem of designing
structures with maximal band gaps is considered under the assumption that
the structure is composed of “mixtures” of two given dielectric materials. In
[10], a existence proof of the solution for a square array of dielectric columns
is presented and a generalized gradient ascent algorithm is applied to solve
this problem. And in [14], the result by using the level set method (cf. [19])
has shown great improvements in the value of the gaps and the convergence
speed.

To focus on the study of maximizing band gaps in photonic crystals, the fol-
lowing conditions are assumed (cf. [10], [14]): the medium is isotropic, the
magnetic permeability is constant, and the dielectric function ε(x) is periodic.
Applying the Bloch theorem, the simplified Maxwell’s equations on the trans-
verse magnetic (TM) field and the transverse electric (TE) field will become:





− 1
ε(x)

(∇+ iα) · (∇+ iα)Eα =
ω2

TM
c2

Eα,

−(∇+ iα) · 1
ε(x)

(∇+ iα)Hα =
ω2

TE
c2

Hα,

(16)

where α is a wave number in the irreducible Brillouin zone and the density
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function

ε(x) =





ε1 for x /∈ Ω

ε2 for x ∈ Ω.

Since we only consider the square lattice, the irreducible Brillouin zone is the
triangular wedge in the upper-right corner of the first Brillouin zone K =
[−π, π]2, which is inset in both bottom figures in Figure (1). The three special
points Γ, X, and M correspond respectively to α = (0, 0), α = (π, 0), and
α = (π, π).

We solve the following optimization problems:

(1) Maximize the band gap in TM : FTM(Ω) := sup
ε(x)

( inf
α

ωn+1

TM − sup
α

ωn
TM),

(2) Maximize the band gap in TE : FT E(Ω) := sup
ε(x)

( inf
α

ωm+1

TE − sup
α

ωm
TE).

Here we only maximize the band gap in TM case. The shape derivative of
FTM (cf. [14]) is

dSF(Ω)(θ) =
∫

∂Ω

VTMθ · n ds,

where

VTM = co
{
−1

2
(ε2 − ε1)ω

n+1
TM |u|2 : u ∈ Υn+1

TM (ε, α)
}

− co
{
−1

2
(ε2 − ε1)ω

n
TM |u|2 : u ∈ Υn

TM(ε, α)
}

,
(17)

where Υn
TM is the span of all eigenfunctions u associated with the eigenvalues

ωn
TM and satisfying the normalization

∫
D εu2 = 1.

Based on the work [4] by Ammari and Nedelec, we know that the eigen-
value ωn

TM(Ωρ,x) is twice differentiable for small ρ, so does the corresponding
eigenvector u(Ωρ,x)(y). Combining the fact that u(Ωρ,x)(y) belongs to C∞(D),
which of course implies Lipschitz continuous, we obtain that the topological
derivative equals −VTM(x).

The level set method (cf. [19]) is applied in [14] to represent the interface
between two materials with different dielectric constants, i.e.,

ε(x) =





ε1 for {x : φ(x) < 0},

ε2 for {x : φ(x) > 0}.
(18)
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We update the level set function by solving the standard level set equation
(4), where the velocity W gives the ascent direction to optimize the desired
design (cf. [14]). To incorporate the topological derivative, we just need to add
a constant ω as in (13). After φ is updated, new distribution of density and
the gradient ascent direction can be computed. This procedure is repeated
until the static state is reached. The same procedure is also done for the
acoustic drum problem in Section 5.2. No reinitialization step is taken for
both problems.

In our numerical simulations, we consider a photonic crystal with a square
lattice D = [−0.5, 0.5] × [−0.5, 0.5] and we use 64 × 64 mesh grids. For the
reason of clarity, a 3×3 array of unit lattice is shown, see the top of Figure (1).
This figure is the initial dielectric function ε(x), which is used to maximize the
band gap between the third and the fourth eigenvalues in TM . The light color
indicates the low dielectric constant ε2 = 1 while the dark color indicates the
high dielectric constant ε1 = 11.4. The width of crosses is 0.2. The bottom left
figure shows the corresponding band structure for the wave vector α along the
boundary of the irreducible Brillouin zone of reciprocal lattice. Compared with
the initial band structure, the right side band gap structure for the optimal
shape has a quite large space between the third and the fourth eigenvalues.

Furthermore, for the above case of maximizing the band gap between ω3
TM and

ω4
TM , results by solving equation (13) are shown in Figure 2 and 3. We present

the comparison results of four different choices of the topological derivative
parameter ω, which varies from 0 to 10. In Figure 2, all of them give almost
the same optimal shape. However, it only takes 11 steps to reach the optimal
shape when ω = 10 (see Figure 3, bottom right), while it takes 28 steps for
the standard level set method, i.e. ω = 0 (see Figure 3, top left). Moreover, for
the case of ω = 10, it’s at the 4th step that the gap exceeds over 0.15, while
it’s not until the 20th step for the case of ω = 0. This fact indicates that the
topological derivative takes the main role at the beginning. During the four
experiments, the time step dt is always set to satisfy the CFL condition:

dt

dx
|W |∞ = 0.5 < 1.0.

Figure 4 and 5 show the evolution of dielectric distribution of optimizing the
band gap for the eighth and ninth eigenvalues in TM . A series of pictures
are presented in each figure to demonstrate how topology changes along the
iteration.

In Figure 4, equation (13) is solved with ω = 100. The topology changes
drastically from the initial shape with infα ω9

TM − supα ω8
TM = −0.1040 to the

result from the third iteration with gap = 0.2012, see top three pictures in
Figure 4. We notice that since the third iteration the topology has not changed
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Fig. 1. Top: the initial cross-sectional view of the dielectric distribution; Bottom
left: the initial band gap structure; Bottom right: the final band gap structure for
maximizing the band gap between ω3

TM and ω4
TM .

at all even though the band gap has doubled itself from 0.2012 to 0.4217 at the
25th iteration. We believe that the use of the topological derivative is critical
here. Because “optimal” shapes obtained by using same initial shape but with
ω = 0 or ω = 10 are observed to be stuck at a local optimum, where the band
gap of both cases are negative.

This belief has been verified again in Figure 5, where the level set function is
updated via equation (14). Thus the propagation of the interface is driven by
the force of changing topology only. Again, the change of the topology happens
rapidly at the first five iterations and then the topology stays the same while
the shape evolves itself to the optimal shape with gap = 0.4323. It shows that
topological derivatives are capable of what shape derivatives can do.

The experiment of updating the level set function via equation (14) has been
tested on different initial shapes with maximizing the band gap for different
adjacent eigenvalues. The result of (14) is compared with the result of (13)
with large enough ω and with ω = 0. The initial shapes are the same. Similar
behaviors of the solutions of (14) and (13) with large enough ω are observed.
One of course, is rapid topology changes at early iterations. In addition, com-
pared with the standard level set method, both have more tendency to surpass
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ω = 0.0, maxGap = 0.1890 ω = 1.0, maxGap = 0.2006

ω = 5.0, maxGap = 0.2013 ω = 10.0, maxGap = 0.2044

Fig. 2. Comparison results of the dielectric distribution between different choices of
ω for maximizing the band gap between ω3

TM and ω4
TM .
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Fig. 3. Comparison results of the band gap vs the iteration between different choices
of ω for maximizing the band gap between ω3

TM and ω4
TM .

a local minimum and both are less dependent on the initial shape. However,
there are some issues regarding to the choice of the time step to solve this
ODE problem (14). For details, please read Appendix B below.
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iteration = 1, gap = − 0.1040 iteration = 2, gap = −0.0528 iteration = 3, gap = 0.2012

iteration = 4, gap = 0.2361 iteration = 5, gap = 0.2522 iteration = 25, gap = 0.4217

Fig. 4. The evolution of the dielectric distribution by solving φt+W (|∇φ|+100) = 0
for maximizing the band gap between ω8

TM and ω9
TM .

5.2 The Acoustic Drum Problem

The resonant frequencies of a drum satisfy the eigenvalue problem (cf. [18])




−∆u(x) = λε(x)u(x) x ∈ D

u = 0 x ∈ ∂D.

Let Ω ⊂⊂ D be a domain inside D. Suppose that the density ε(x) only takes
two values

ε(x) =





ε1 for x /∈ Ω

ε2 for x ∈ Ω,

and the mass is a constant which implies

∫

Ω

dx = c

where c is a constant. By using the Lagrange multiplier method, maximal
band gaps between λk+1 and λk can be found by maximizing the following
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iteration = 1, gap = − 0.1040 iteration = 2,gap = 0.0331 iteration = 3, gap = 0.0638

iteration = 4, gap = 0.0659 iteration = 5, gap = 0.1423 iteration = 6, gap = 0.1481

iteration = 8, gap = 0.2462 iteration = 15, gap = 0.3977 iteration = 25, gap = 0.4323

Fig. 5. The evolution of the dielectric distribution by solving φt = −W for maxi-
mizing the band gap between ω8

TM and ω9
TM .

objective functional

F(Ω) = λk+1(Ω)− λk(Ω) + ν




∫

Ω

dx− c


 ,

where ν is the Lagrange multiplier. The shape derivative of F is

dSF(Ω)(θ) =
∫

∂Ω

(v + ν) θ · n ds,

where

v(x) = λk+1(ε2 − ε1)u
2
k+1(x)− λk(ε2 − ε1)u

2
k(x). (19)
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and

ν = −
∫
D∇ · v n dx∫
D∇ · n dx

(20)

is obtained based on the projection approach from the mass constraint. The
eigenfunction u(x) satisfies the normalization

∫
D εu2(x) dx = 1. We start from

an initial guess for φ:

ε =





ε1 for x /∈ Ω {x : φ(x) < 0}
ε2 for x ∈ Ω {x : φ(x) > 0},

compute the gradient ascent direction W = v + ν and evolve φ by the stan-
dard level set equation (4) for one time step. For the approach based on the
combination of shape derivative and topological derivative, equation (13) is
solved with ω = 10.

We show the numerical results based on purely shape derivatives and the
combination of shape derivatives and topological derivatives for spectral gap
from λ2 − λ1 to λ5 − λ4. We can clearly see that the algorithms based on two
different approaches yield different evolutions. In general, the second approach
which is based on combination of shape derivatives and topological derivatives
is more flexible on shape changing because it can easily generate new holes.
For optimizing λ2 − λ1, the evolutions are pretty much the same for both
approaches, see Figure 6 and 7. However, the second approach reaches static
state much faster than the first approach. It takes less than 50 iterations. For
optimizing λ3 − λ2, the second approach easily creates new holes and also
reaches static state faster, see Figure 8 and 9. For optimizing λ4 − λ3, the
first approach gets stuck in a local maximum λ4 − λ3 = 15.2323 while the
second approach obtains a different optimal shape which has a larger gap
λ4−λ3 = 16.3642, see Figure 10 and 11. For optimizing λ5−λ4, it is again the
example that both approaches reach same static state but the second approach
offers a faster way, see Figure 12 and 13.

6 Appendix

6.1 Appendix A

Suppose Ω0 is the optimal shape given. If there is a point x ∈ D such
that φ(x, t)W (x, t) > 0, then either both of φ(x, t) and W (x, t) are posi-
tive or negative. If both are positive, which means the point x ∈ D − Ω0
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Fig. 6. The evolution of the density distribution for max
Ω

λ2 − λ1 from solving

φt + W |∇φ| = 0. After 450 iterations, max
Ω

λ2 − λ1 = 15.4618.

and the topological derivative dTF(Ω0)(x, t) = W (x, t) > 0, then we should
add material at x; if both are negative, that means the point x ∈ Ω0 and
dTF(Ω0)(x, t) = −W (x, t) > 0, then we should create holes at the point x. In
either case, the topology has to be changed. That of course, shows Ω0 is not
an optimal shape.

In our experimental results of optimal shape, we observe some points which
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Fig. 7. The evolution of the density distribution for max
Ω

λ2 − λ1 from solving

φt + W (|∇φ|+ 10) = 0. After 180 iterations, max
Ω

λ2 − λ1 = 15.4724.

satisfy The same conclusion can not be drawn if we follow the same line of
this paperφ(x, t)W (x, t) > 0. See points inside the white area but outside the
circle in Figure 14. They satisfy φ(x, t) < 0 and W (x, t) < 0. We consider this
area as the diffusion area because the values of W at these points in the area
are small.
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Fig. 8. The evolution of the density distribution for max
Ω

λ3 − λ2 from solving

φt + W |∇φ| = 0. After 600 iterations, max
Ω

λ3 − λ2 = 20.1239.

6.2 Appendix B

To solve (14), first we denote T n
i,j = max(

φn
i,j

W n
i,j

, 0), M = max
i,j
{T n

i,j} and m =

min
i,j
{T n

i,j}. Then we let dt = M and take the following steps to update the
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Fig. 9. The evolution of the density distribution for max
Ω

λ3 − λ2 from solving

φt + W (|∇φ|+ 10) = 0. After 150 iterations, max
Ω

λ3 − λ2 = 20.1600.

level set function from φn to φn+1 :

(1) While dt ≥ m, we compute φn+1 through φn+1 = φn− dt ∗W n; otherwise
we stop here which is considered as our optimal shape.

(2) Compute the new band gap of dielectric distribution ε determined by
φn+1. When the new gap is smaller than the old gap, let dt = dt

2
, go back

to step 1.
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Fig. 10. The evolution of the density distribution for max
Ω

λ4 − λ3 from solving

φt + W |∇φ| = 0. After 600 iterations, max
Ω

λ4 − λ3 = 15.2323.

We state that the purpose of choosing dt = M is to impose an “optimal
shape” according to W . However, sometimes the monotonicity of the band
gap requires a smaller time step when the band gap is not increasing. This
idea of using an energy function as the criterion is related with the work
of Song and Chan in [24]. Unfortunately, the above algorithm often needs
to go back to step 1 for several times before obtaining a larger new gap. It
is very time consuming considering the large computation of eigs() function
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Fig. 11. The evolution of the density distribution for max
Ω

λ4 − λ3 from solving

φt + W (|∇φ|+ 10) = 0. After 300 iterations, max
Ω

λ4 − λ3 = 16.3642.

in Matlab. Similar situations are encountered in a recent paper by Amstutz
and Andra [6], a different approach is proposed to solve (14) due to the fact
that W is not bound to vanish at an optimum. Again, their time step is
chosen according to the previous iteration and possibly decreased until the
energy functional decreases. Their approach is taken by projecting W onto
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Fig. 12. The evolution of the density distribution for max
Ω

λ5 − λ4 from solving

φt + W |∇φ| = 0. After 1200 iterations, max
Ω

λ5 − λ4 = 21.5935.

the orthogonal complement of φ, i.e.

φt = −W +
(W,φ)

||φ||2 φ.

Thus the level set function is constrained to a sphere of radius ||φ0|| and
when φ tends to a local maximum W = sφ is obtained, where s is a positive
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Fig. 13. The evolution of the density distribution for max
Ω

λ5 − λ4 from solving

φt + W (|∇φ|+ 10) = 0. After 450 iterations, max
Ω

λ5 − λ4 = 21.4818.

constant. This certainly agrees with Appendix A. For details, see [6]. However
in some other applications of the topological derivative, particularly, the active
contour model by Chan and Vese [8,26], we can avoid solving the ODE (14)
by considering directly the variation of the energy functional when we move a
pixel from inside the zero level set to outside the zero level set or vice versa.
This will be reported in a sequential paper.
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Fig. 14. The ”sign” picture of φ and W solved from φt = −W for maximizing the
band gap between ω8

TM and ω9
TM . White area represents φ < 0, black background

represents φ > 0, inside the solid circle is marked as W > 0 and outside the solid
circle represents W < 0.
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