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Abstract. In this paper, we incorporated the global convex segmenta-
tion method and the Split Bregman technique into the region-scalable
fitting energy model. The new proposed method based on the region-
scalable model can draw upon intensity information in local regions at
a controllable scale, so that it can segment images with intensity inho-
mogeneity. Furthermore, with the application of the global convex seg-
mentation method and the Split Bregman technique, the method is very
robust and efficient. By using a non-negative edge detector function to
the proposed method, the algorithm can detect the boundaries more eas-
ily and achieve results that are very similar to those obtained through
the classical geodesic active contour model. Experimental results for syn-
thetic and real images have shown the robustness and efficiency of our
method and also demonstrated the desirable advantages of the proposed
method.
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1 Introduction

Image segmentation [1–4] is a fundamental and important task in image analysis
and computer vision. Most of existing methods for image segmentation can be
categorized into two classes: region-based methods [1, 5–9] and edge-based meth-
ods [3, 4, 10–13]. In general, the region-based methods are more robust than the
edge-based methods. However, the former type of methods [1, 5–7] typically re-
lies on the homogeneity of the image intensities, which is often not satisfied by
real world images.

Intensity inhomogeneity has been a challenging difficulty for region-based
methods. It often occurs in real images from different modalities such as medical
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images. Segmentation of such medical images usually requires intensity inhomo-
geneity correction as a preprocessing step [14]. Intensity inhomogeneity can be
addressed by more sophisticated models than piecewise constant (PC) models.
Two piecewise smooth (PS) models were proposed in Vese and Chan [9] and Tsai
et al. [8] independently, aiming at minimizing the Mumford-Shah functional [15].
These PS models have exhibited certain capability of handling intensity inho-
mogeneity. However, they are computationally expensive and suffer from other
difficulties. Michailovich et al. [16] proposed an active contour model which does
not rely on the intensity homogeneity and, therefore, to some extent, overcomes
the limitation of PC models. Recently, Li et al. [17] proposed an efficient region-
based model, called a region-scalable fitting (RSF) energy model, which is able
to deal with intensity inhomogeneities. The RSF model was formulated in a level
set framework, which is quite sensitive to contour initialization.

Recently the Split Bregman method has been adopted to solve image seg-
mentation more efficiently. This method has the advantage that it does not
require regularization, continuation or the enforcement of inequality constraints
and therefore is extremely efficient. Several applications of the Split Bregman
method are Rudin-Osher-Fatemi (ROF) denoising [18–20] and image segmen-
tation [21, 22]. In [19], they applied this technique to the ROF functional for
image denoising and to a compressed sensing problem that arose in Magnetic
Resonance Imaging. In [22], the authors applied the Split Bregman concept to
image segmentation problems and built fast solvers. However, this method was
based on the PC model and thus it was not able to deal with intensity inhomo-
geneity.

In this paper, we incorporate the global convex segmentation (GCS) method
and the Split Bregman technique into the RSF model[17]. We first drop the
regularization term of the original gradient flow equation in [17]. Following the
idea in Chan et al. [23], we then get a simplified flow equation which has coinci-
dent stationary solution with the original one. In order to guarantee the global
minimum, we restrict the solution to lie in a finite interval. Then we modify
the simplified energy to incorporate information from the edge by using a non-
negative edge detector function, and get results that are very similar to those
obtained through the classical geodesic active contour (GAC) model [10]. We
thus apply the Split Bregman method to the proposed minimization problem of
region-scalable fitting energy for segmentation and demonstrate many numerical
results. As a result, the proposed algorithm can be used to segment images with
intensity inhomogeneity efficiently.

The remainder of this paper is organized as follows. We first review some
well-known existing region-based models and their limitations in Section 2. The
new proposed method is introduced in Section 3. The implementation and results
of our method are given in Section 4. This paper is concluded in Section 5.
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2 Region-based Active Contour Models

2.1 Chan-Vese Model

Chan and Vese [1] proposed an active contour approach to the Mumford-Shah
problem [15]. This image segmentation method works when the image consists of
homogeneous regions. Let Ω ⊂ ℜ2 be the image domain, and I : Ω → ℜ be a
given gray level image, the idea is to find a contour C which segments the given
image into non-overlapping regions. The model they proposed is to minimize the
following energy:

FCV (C, c1, c2) = λ1

∫
outside(C)

|I(x)−c1|
2dx+λ2

∫
inside(C)

|I(x)−c2|
2dx+ν|C| ,

(1)
where λ1, λ2 and ν are positive constants, outside(C) and inside(C) rep-
resent the regions outside and inside the contour C, respectively, c1 and
c2 are two constants that approximate the image intensities in outside(C) and
inside(C), and |C| is the length of the contour C. The optimal constants
c1 and c2 that minimize the above energy turn out to be the averages of the
intensities in the entire regions outside(C) and inside(C), respectively. For
inhomogeneous images, as demonstrated in [17, 24], the PC model [1, 5, 9] may
fail to provide correct image segmentation. Thus PS model [8, 9] was proposed
to overcome this limitation. Instead of constant approximations c1 and c2 in
PC model, two smooth functions u+ and u− were used to estimate the inten-
sities outside and inside the contour C. However, this approach requires solving
two elliptic PDEs for u+ and u− and one evolution equation for φ. The
complexity of the algorithm limits its applications in practice.

2.2 Region-Scalable Fitting Energy Model

Recently, Li et al. [17] proposed a new region-based model to use the local
intensity information in a scalable way. The energy functional they tried to
minimize is:

E(C, f1(x), f2(x)) =

2∑
i=1

λi

∫
[

∫
Ωi

Kσ(x− y)|I(y)− fi(x)|2dy]dx + ν|C| , (2)

where Ω1 = outside(C) and Ω2 = inside(C), λ1, λ2 and ν are positive
constants, and f1(x) and f2(x) are two functions that approximate image
intensities in Ω1 and Ω2, respectively. The aim of the kernel function Kσ is
to put heavier weights on points y which are close to the center point x. For
simplicity, a Gaussian kernel with a scale parameter σ > 0 was used:

Kσ(u) =
1

2πσ2
e−|u|2/2σ2

. (3)

To handle topological changes, the authors in [17] converted (2) to a level set
formulation.
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As in level set methods [25], the contour C ⊂ Ω is represented by the zero
level set of a level set function φ : Ω → ℜ. Thus, the energy E in (2) can be
written as:

Eǫ(φ, f1, f2) =

∫
Ex

ǫ (φ, f1(x), f2(x))dx + ν

∫
|∇Hǫ(φ(x))|dx , (4)

where

Ex
ǫ (φ, f1(x), f2(x)) =

2∑
i=1

λi

∫
Kσ(x− y)|I(y)− fi(x)|2M ǫ

i (φ(y))dy (5)

is the region-scalable fitting energy, M ǫ
1(φ) = Hǫ(φ) and M ǫ

2(φ) = 1 −
Hǫ(φ). Hǫ is a smooth function approximating the Heaviside function H which
is defined by:

Hǫ(x) =
1

2
[1 +

2

π
arctan(

x

ǫ
)] . (6)

In order to preserve the regularity of the level set function φ, they used a
level set regularization term [12]:

P(φ) =

∫
1

2
(|∇φ(x)| − 1)2dx . (7)

Therefore, the energy functional they proposed to minimize is:

F(φ, f1, f2) = Eǫ(φ, f1, f2) + µP(φ) , (8)

where µ is a positive constant.

To minimize this energy functional, the standard gradient descent method
is used. By calculus of variations, for a fixed level set function φ, the optimal
functions f1(x), f2(x) that minimize F(φ, f1, f2) are obtained by:

fi(x) =
Kσ(x) ∗ [M ǫ

i (φ(x))I(x))]

Kσ(x) ∗M ǫ
i (φ(x))

, i = 1, 2 . (9)

For fixed f1 and f2, the level set function φ that minimizes F(φ, f1, f2) can
be obtained by solving the following gradient flow equation:

∂φ

∂t
= −δǫ(φ)(λ1e1 − λ2e2) + νδǫ(φ)div(

∇φ

|∇φ|
) + µ[∇2φ− div(

∇φ

|∇φ|
)] , (10)

where δǫ is the derivative of Hǫ , and ei (i = 1 or 2) is defined as:

ei(x) =

∫
Kσ(y − x)|I(x) − fi(y)|2dy, i = 1, 2 . (11)
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3 Split Bregman Method for Minimization of

Region-Scalable Fitting Energy

In this section we introduce a new region-scalable model which incorporates the
GCS method and the Split Bregman technique. In fact, the energy functional
(4) of the RSF model in section 2.2 is nonconvex, so the evolution can be easily
trapped to a local minimum. We thus apply the GCS method to the RSF model
to make the fitting energy convex. The Split Bregman technique is used to mini-
mize the energy functonal in a more efficient way. The proposed new model thus
can improve the robustness and efficiency, while inheriting the desirable ability
to deal with intensity inhomogeneity in image segmentation.

Considering the gradient flow equation (10), we first drop the last term which
regularized the level set function to be close to a distance function:

∂φ

∂t
= δǫ(φ)[(−λ1e1 + λ2e2)− νdiv(

∇φ

|∇φ|
)] , (12)

without loss of generality, we take ν = 1. The Chan-Vese Model can be con-
sidered as a special case of (12), i.e. Kσ(y − x) = 1Ω/|Ω|.

Following the idea in Chan et al. [23], the stationary solution of (12) coincides
with the stationary solution of:

∂φ

∂t
= [(−λ1e1 + λ2e2)− div(

∇φ

|∇φ|
)] . (13)

The simplified flow represents the gradient descent for minimizing the energy:

E(φ) = |∇φ|1 + 〈φ, λ1e1 − λ2e2〉 . (14)

This energy does not have a unique global minimizer because it is homogeneous
of degree one. By restricting the solution to lie in a finite interval, e.g. a0 ≤ φ ≤
b0, the global minimum can be guaranteed, i.e.

min
a0≤φ≤b0

E(φ) = min
a0≤φ≤b0

|∇φ|1 + 〈φ, r〉 , (15)

where r = λ1e1 − λ2e2. Once the optimal φ is found, the segmented region
can be found by thresholding the level set function for some α ∈ (a0, b0) :

Ω1 = {x : φ(x) > α} . (16)

As in [26], we modify the energy (15) to incorporate information from an
edge detector. This is accomplished by using the weighted TV norm:

TVg(φ) =

∫
g|∇φ| = |∇φ|g , (17)

where g is the non-negative edge detector function. One common choice for the
edge detector is:

g(ξ) =
1

1 + β|ξ|2
, (18)



6 Yunyun Yanga,b, Chunming Lic, Chiu-Yen Kaoa,d, and Stanley Osher e

where β is a parameter that determines the detail level of the segmentation.
By replacing the standard TV norm TV (φ) =

∫
|∇φ| = |∇φ|1 in (15) with

the weighted version (17), we make the model more likely to favor segmentation
along curves where the edge detector function is minimal. Then the minimization
problem becomes:

min
a0≤φ≤b0

E(φ) = min
a0≤φ≤b0

|∇φ|g + 〈φ, r〉 . (19)

To apply the Split Bregman approach [22] to (19), we introduce the auxillary

variable,
−→
d ← ∇φ. To weakly enforce the resulting equality constraint, we add a

quadratic penalty function which results in the following unconstrained problem:

(φ∗,
−→
d

∗
) = arg min

a0≤φ≤b0
|
−→
d |g + 〈φ, r〉 +

λ

2
‖
−→
d −∇φ ‖2 . (20)

We then apply Bregman iteration to strictly enforce the constraint
−→
d = ∇φ. The

resulting optimization problem is:

(φk+1,
−→
d

k+1
) = arg min

a0≤φ≤b0
|
−→
d |g + 〈φ, r〉 +

λ

2
‖
−→
d −∇φ−

−→
b

k
‖2 . (21)

−→
b

k+1
=
−→
b

k
+∇φk+1 −

−→
d

k+1
. (22)

For fixed
−→
d , the Euler-Lagrange equation of optimization problem (21)

with respect to φ is:

△φ =
r

λ
+∇ · (

−→
d −
−→
b ), whenever a0 < φ < b0 . (23)

By using central discretization for Laplace operator and backward difference for
divergence operator, the numerical scheme for (23) is:

αi,j = dx
i−1,j − dx

i,j + dy
i,j−1 − dy

i,j − (bx
i−1,j − bx

i,j + by
i,j−1 − by

i,j) . (24)

βi,j =
1

4
(φi−1,j + φi+1,jφi,j−1 + φi,j+1 −

r

λ
+ αi,j) . (25)

φi,j = max{min{βi,j, b0}, a0} . (26)

For fixed φ, minimization of (21) with respect to
−→
d gives:

−→
d

k+1
= shrinkg(

−→
b

k
+∇φk+1,

1

λ
) = shrink(

−→
b

k
+∇φk+1,

g

λ
) , (27)

where

shrink(x, γ) =
x

|x|
max(|x| − γ, 0) . (28)
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4 Implementation and Experimental Results

4.1 Implementation

The Split Bregman algorithm for the minimization problem (19) in section 3 can
be summarized as follows:

1: while ‖ φk+1 − φk ‖> ǫ do
2: Define rk = λ1e

k
1 − λ2e

k
2

3: φk+1 = GS(rk,
−→
d

k
,
−→
b

k
, λ)

4:
−→
d

k+1
= shrinkg(

−→
b

k
+∇φk+1, 1

λ)

5:
−→
b

k+1
=
−→
b

k
+∇φk+1 −

−→
d

k+1

6: Find Ωk
1 = {x : φk(x) > α}

7: Update ek
1 and ek

2

8: end while

Here, we have used GS(rk,
−→
d

k
,
−→
b

k
, λ) to denote one sweep of the Gauss-Seidel

formula (24)-(26).
In this paper, the level set function φ can be simply initialized as a binary

step function which takes a constant value b0 inside a region and another
constant value a0 outside. Then the thresholding value α is chosen as α =
(a0 + b0)/2 when one needs to find the segmented region Ω1 = {x : φ(x) >
α}. We choose a0 = 0, b0 = 1 in most of the experiments shown in this
paper, while for some images, we will choose different values to get better result
or faster convergence. The details will be shown in next subsection 4.2. In our
implementation, the functions f1 and f2 are updated at every time step
according to (9) before the update of the level set function φ. As in [17], in
order to compute the convolutions in (9) more efficiently, the kernel Kσ can be
truncated as a w×w mask, here we also choose w = 4σ + 1. For most of our
experiments, the scale parameter is chosen as σ = 3.0 unless specified.

4.2 Results

The proposed method has been tested with synthetic and real images from dif-
ferent modalities. Unless otherwise specified, we use the following parameters
in this paper: σ = 3.0, a0 = 0, b0 = 1, ǫ = 1, and λ = 0.001. We use
β = 100 for all images except for the brain image in the last column of Fig. 2
we use β = 10, and for the noisy synthetic images in column 1 of Fig. 2 and
row 3 of Fig. 3 we choose β = 20. We use λ1 = 1.1e − 5, λ2 = 1e − 5 for
most images in this paper, for several other images we use different parameters
λ1, λ2 for better and faster results. In general, our method with a small scale
σ can produce more accurate location of the object boundaries.

We first show the result for a synthetic inhomogeneous image in Fig. 1. Col-
umn 1 is the original image with the initial contour, column 2 is the result of our
method, column 3 is the result of the Split Bregman on PC model in [22]. From
this figure, we can see the advantage of our proposed method for inhomogeneous



8 Yunyun Yanga,b, Chunming Lic, Chiu-Yen Kaoa,d, and Stanley Osher e

image. Our method can segment the images correctly even though the image is
very inhomogeneous, while the Split Bregman on PC model can not segment it
correctly as shown in column 3.

Fig. 1. Segmentation of a synthetic image with our proposed method and Split Breg-
man on PC model. Column 1: the original image and the initial contour. Column 2:
the result of our proposed method. Column 3: the result of the Split Bregman on PC
model

Fig. 2 shows the results for one synthetic image, one X-ray image of vessel,
and two real images of a T-shaped object and an MR image from left to right.
All of them are typical images with intensity inhomogeneity. The top row are the
original images with the initial contours, the bottom row are the results with the
final contours. As shown in Fig. 2, our method successfully extracts the object
boundaries for these challenging images. For the images in the first two columns,
we choose λ1 = λ2 = 1e−5. For the real brain image in the last column, we use
λ1 = 1.25e− 5 and λ2 = 1e− 5 in order to put a larger penalty on the area of
inside(C). In this way the emergence of new contour outside the initial contour,
which would increase the area of inside(C), is to some extent prevented.

Fig. 2. Results of our method for synthetic images and real images. Top row: original
images with initial contours. Bottom row: segmentation results with final contours
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The results in Fig. 2 are similar to the results with the original RSF model in
[17]. However, by comparing the computational procedures in the original RSF
model and our model, it is clear that our method is more efficient than the RSF
model because we apply the Split Bregman approach to the optimization prob-
lem. This is demonstrated by comparing the iteration number and computation
time in both methods for four images in Table 1, which were recorded from our
experiments with Matlab code run on a Dell Precision 390 PC, Genuine Intel(R)
Xeon (R), X7350, 2.93 GHz, 4 GB RAM, with Matlab 7.9. The sizes of these
images are also shown in this table. In the experiments with the images in Fig. 2,
the CPU time of our model is about one second.

Table 1. Iteration number and CPU time (in second) for our model and RSF model
for the images in Fig. 2 in the same order. The sizes of images are 75 × 79, 110 ×

110, 96 × 127, and 78 × 119 pixels, respectively

image1 image2 image3 image4

Our model 32(0.33) 67(1.13) 26(0.49) 48(0.70)
RSF model 200(1.40) 150(1.74) 300(3.72) 300(3.01)

We show the results for three synthetic flower images in Fig. 3. These images
all have the same flower in the center but different distribution of intensities. The
curve evolution process from the initial contour to the final contour is shown in
every row for the corresponding image. The intensity of the image in the first
row is piecewise constant. The second and third rows in Fig. 3 show the results
for two images corrupted by intensity inhomogeneity. The image in third row
was generated by adding random noise to the clean image in the second row.
The standard deviation of the noise is 5.0. We can see that the segmentation
results for the clean image and the noise contaminated version are very close.
This demonstrates the robustness of our method to the noise.

Then we show the result for another synthetic image in Fig. 4. This image has
been used in [1], there are three objects in this image with different intensities.
The initial and the final contours are plotted on the images in the first row and
the second row, respectively. The first column is the result for the piecewise
constant image, the second column shows the result for the image corrupted
by intensity inhomogeneity in the background. In this experiment, we choose
a0 = −2, b0 = 2 instead of a0 = 0, b0 = 1, because when a0 = 0, b0 = 1 are
chosen, the algorithm fails to detect the interior contour correctly as shown
in the third and the fourth columns. We choose λ1 = λ2 = 2e − 6 for the
inhomogeneous images in the second and the fourth columns. From the second
column, we can see that the intensity in the background is inhomogeneous and
part of the background has very close intensities to the circular ring, but our
method can successfully extract the object boundary in this image. The results
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Fig. 3. Results of our method for three synthetic images. The curve evolution process
from the initial contour (in the first column) to the final contour (in the fourth column)
is shown in every row for the corresponding image

also show that our method is able to segment images with multiple distinct
means of image intensities.

In Fig. 5, we apply our model to a color image of flower. In this experiment,
we choose a0 = −2, b0 = 2 and λ1 = λ2 = 2e − 6. The evolution of active
contours from its initial state to the converged state is shown. This experiment
shows that our method can also segment color images well.

5 Conclusion

This paper incorporated the GCS method and the Split Bregman technique
into the RSF model, which was originally formulated in a level set framework
for segmentation of inhomogeneous images. The proposed method significantly
improves the efficiency and robustness of the RSF model, while inheriting its
desirable ability to deal with intensity inhomogeneity in image segmentation.
Furthermore, a non-negative edge detector function is used to detect the bound-
aries more easily. Our method has been applied to synthetic and real images with
promising results. Comparisons with the Split Bregman method on PC model
and the original RSF model demonstrate desirable advantages of the proposed
method.
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Fig. 4. Results of our method for a synthetic image. Row 1: the original image and
the initial contour. Row 2: the final contour. Column 1: the piecewise constant image,
a0 = −2, b0 = 2. Column 2: the inhomogeneous image, a0 = −2, b0 = 2. Column 3:
the piecewise constant image, a0 = 0, b0 = 1. Column 4: the inhomogeneous image,
a0 = 0, b0 = 1

Fig. 5. The result of our method for a color image of flower. It shows the curve evolution
process from the initial contour to the final contour
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