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Abstract

In this paper, we propose a novel region-based active
contour model for image segmentation with a variational
level set formulation. By introducing a local binary fit-
ting energy, the proposed method is able to utilize accu-
rate local image information for accurate recovery of de-
sired object boundary. Our method is able to segment im-
ages with intensity inhomogeneity, weak object boundaries,
and vessel-like structures. Comparison with typical region
based active contour models, such as piecewise constant
model and piecewise smooth model, shows the advantages
of our method in terms of computational efficiency and ac-
curacy. In addition, the proposed method has promising
application for image denoising. Our method has been suc-
cessfully applied to synthetic and real images in different
modalities.

1. Introduction
Active contour models have been one of the most suc-

cessful methods for image segmentation [1, 4, 6, 10, 19].
There are several desirable advantages of active contour
models. First, active contour models can achieve sub-pixel
accuracy of the object boundaries [18]. Second, various
prior knowledge, such as shape and intensity distribution,
can be easily incorporated into active contour models for
robust image segmentation [3, 8, 16]. Third, the resultant
contours/surfaces are quite regular, which are convenient
for further applications, such as shape analysis, classifica-
tion, and recognition.

The existing active contour models can be categorized
into two classes: edge-based models [1, 6, 7, 9, 10] and
region-based models [2, 12–15]. These two types of mod-
els both have their pros and cons, and the choice of them in
applications depends on different characteristics of images.

Edge-based models utilize image gradient to stop the
evolving contours on the object boundaries. Typical edge-

based active contour models [1, 10] have an edge-based
stopping term and a balloon force term to control the mo-
tion of the contour. The edge-based stopping term serves to
stop the contour on the desired object boundary, but it only
takes effect near the image edges, since it is computed from
the image gradient. The balloon force term is introduced to
push the active contour from its initial location that is far
away from the desired object boundary, so that the initial
contour can be placed in a larger range. However, appro-
priate choice of balloon force is sometimes difficult. If the
balloon force is not large enough, the evolving contour may
not able to pass some narrow part of the object, such as thin
branches of vessels. If the balloon force is too large, the
active contour is likely to pass through weak object bound-
ary, where the image gradient is relatively small compared
to the balloon force.

Region-based active contour models have the following
advantages over edge-based models. First, region-based
models do not utilize the image gradient and therefore has
better performance for the image with weak object bound-
aries. Second, they are significantly less sensitive to the
location of initial contours. One of the most popular region-
based active contour models is Chan-Vese model [2]. This
model has been successful for images with two regions,
each having a distinct mean of pixel intensity. In [17], Vese
and Chan extended their original model in [2] by using a
multiphase level set formulation, in which multiple regions
can be represented by multiple level set functions. These
models are called piecewise constant (PC) models, since
they assume that an image consists of statistically homoge-
neous regions, with intensities in each region being a con-
stant up to certain noise. Based on this assumption, image
segmentation is performed by minimizing an energy func-
tional whose variables are the contours (or level set func-
tions in level set formulations) and a given number of con-
stants, which approximate the image intensities in each re-
gion. The PC models are successful for images with homo-
geneous regions. However, the regions of interest in images
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are often not statistically homogeneous, and therefore the
PC models are not applicable to those types of images.

To handle more general scenario, Vese and Chan [17]
and Tsai et al. [15] proposed two similar region-based ac-
tive contour models, aiming at minimization of Mumford-
Shah functional [11]. In [17], Vese and Chan proposed a
piecewise smooth (PS) model, which overcomes the limita-
tion of their original work [2]. But these methods are com-
putationally inefficient. The technique proposed by Tsai et
al. [15] can address the segmentation of images with in-
tensity inhomogeneity. However, the computation in their
method is also expensive. As proposed in [15], one way to
reduce the computational cost is to use a contour near the
object boundaries as the initial contour. In their method,
such initial contour is obtained by a preliminary segmenta-
tion using other active contour models, such as Chan and
Vese’s PC model. However, for images with intensity in-
homogeneity, Chan-Vese model can result in a contour that
is still far away from the object boundary. In this situation,
their two-stage approach still cannot significantly reduce the
computation cost.

In fact, intensity inhomogeneity occurs in many real im-
ages of different modalities. In particular, it is often seen
in medical images, such as X-ray radiography/tomography
and magnetic resonance (MR) images, due to technical lim-
itations or artifacts introduced by the object being imaged.
For example, intensity inhomogeneity typically appears in
MR images (see Fig. 4(a) for example). The inhomogeneity
in MR images arises from non-uniform magnetic field pro-
duced by radio-frequency coils as well as from object sus-
ceptibility. The degree of this inhomogeneity is worse for
higher field imaging (e.g, 7T MR) which is being increas-
ingly used in research. Therefore, overcoming the difficulty
of segmentation due to image inhomogeneity is a main mo-
tivation of this paper.

In this paper, we propose a novel active contour model
that is able to segment images with intensity inhomogene-
ity and multiple means of pixel intensity. Our method is
based on a mild assumption that the image can be approx-
imated locally by a binary image. By introducing a local
binary fitting energy, the proposed method is able to incor-
porate local image intensity information into a region-based
active contour model. This energy functional is further in-
corporated into a variational level set formulation without
reinitialization. Therefore, our model has no need for reini-
tialization. Our method is able to segment images with non-
homogeneous regions, weak object boundaries, and vessel-
like structures.

The remainder of this paper is organized as follows. We
first review some well known existing region-based models
and their limitations in Section 1.1 and 1.2. The proposed
method is introduced in Section 2. The implementation and
results of our method are given in Section 3. This paper is

summarized in Section 4.

1.1. Mumford-Shah functional for image segmen-
tation

Let Ω ⊂ <2 be the image domain, and u0 : Ω → < be
a given image function. In [11], Mumford and Shah formu-
lated the image segmentation problem as follows: given an
image I , find a contour C in Ω. They proposed the follow-
ing energy functional:

FMS(u,C) =
∫

Ω

(u−I)2dxdy+ν

∫

Ω\C
|∇u|2dxdy+ν|C|

(1)
where |C| is the length of contour C. The minimization
of the above Mumford-Shah functionals results in an opti-
mal contour C that segments the images, and a piecewise
smooth image u approximating the original image u0. In
practice, it is difficult to minimize the functional (1), due
to the unknown contour C of lower dimension and the non-
convexity of the functional.

Figure 1. Error of thresholding and Chan-Vese model for images
with intensity inhomogeneity. Column 1: Original images; Col-
umn 2: Thresholding results; Column 3: Results of Chan-Vese’s
PC model.

1.2. Region based active contour models

Chan and Vese [2] proposed an active contour model
without using image gradient. For an image I(x, y) on the
image domain Ω, they propose to minimize the following
energy

ECV (C, c1, c2) = λ1

∫

Cin

|I(x)− c1|2dx

+ λ2

∫

Cout

|I(x)− c2|2dx (2)

+ ν|C|
where in(C) and out(C) represent the region inside and
outside of the contour C, respectively, and c1 and c2 are two



constants that approximate the image intensity in in(C) and
out(C). We call the first two terms in (2) the global binary
fitting energy. This energy can be represented by a level set
formulation, and then energy minimization problem can be
converted to solving a level set evolution equation [2].

In the above Chan-Vese model, the constants c1 and c2

are introduced to fit the image intensities in the regions
in(C) and out(C), respectively. Obviously, such global fit-
ting will not be accurate if the image intensities in either
in(C) or out(C) are not homogeneous. This is the rea-
son why Chan-Vese model [2] cannot handle image inho-
mogeneity. Similarly, Vese and Chan’s piecewise constant
model in a multiphase level set framework [17] is still not
suitable for images with intensity inhomogeneity.

1.3. Difficulty due to image inhomogeneity

The synthetic image and the real vessel image in Fig. 1
are typical examples of images with intensity inhomogene-
ity. For example, the intensity in the background decreases
gradually from the top to the bottom in the vessel image.
Moreover, part of the background (the upper left corner) has
even higher intensities than part of the vessel (the lower left
branch). The second column of Fig. 1 shows the results of
thresholding for the two images. For the synthetic image in
Fig. 1, a large part of the background is incorrectly identi-
fied as the foreground by segmentation using thresholding.
For the vessel image, the thresholding also incorrectly label
part of background pixels as the vessel, while a significant
part of the vessel is missing. The third column of Fig. 1
shows the results of Chan-Vese model , which are similar to
those of thresholding and therefore not correct.

1.4. Piecewise smooth models and their difficulties

The PS models proposed by Vese and Chan [15, 17]
and Tsai et al [15] have overcome the difficulties of PC
models in the presence of image inhomogeneity. Instead
of approximating an image I by piecewise constant func-
tions as in PC models, the PS model approximate the im-
age by two smooth functions u−(x) and u+(x) in the sub-
regions Ω− = {x ∈ Ω : φ(x) < 0} (i.e., in(C)) and
Ω+ = {x ∈ Ω : φ(x) > 0} (i.e., in(C)), respectively.
By definition, the functions u− and u+ are defined on two
exclusive subregions Ω− and Ω+, respectively. However,
the level set evolution equation derived to minimize the
energy functional in the PS model is with respect to the
level set function φ, which is defined on the full domain
Ω. Therefore, there is an unavoidable step that extends u−

and u+ to the full domain Ω. Moreover, the smoothness
of the functions u− and u+ is due to the smoothing terms
µ

∫ |∇u−|2dx and µ
∫ |∇u+|2dx in the energy functional

in the PS model, from which two PDEs with respect to u−

and u+ are derived and have to be solved for minimization
of entire energy.

In summary, the minimization of the energy functional in
PS model in level set formulation consists of the following
three computational tasks. The first one is to solve the PDE
of the main function φ by a sequence of iterations. Sec-
ond, at every certain number of iterations for φ, the fitting
functions u− and u+ have to be updated accordingly for the
updated φ. Each update of u− and u+ is to solve two PDEs
of them in the domain Ω− and Ω+, respectively. Third, the
function u− and u+ have to be extended to the full domain
Ω. In some situations, reinitialization is required to main-
tain stable evolution of φ. Obviously, the involved compu-
tation in PS model is expensive, which limit its applications
in practice. We will introduce a new variational level set
formulation, for which there is only one PDE to be solved.
Moreover, there are no procedures of function extension and
reinitialization in our method. The details are given in the
rest of this paper.

2. Local binary fitting active contour model
and its level set formulation

2.1. Active contours with local binary fitting energy

Consider a given vector valued image Ω → <d, where
Ω ⊂ <n is the image domain, and d ≥ 1 is the dimension
of the vector I(x). For gray level images, d = 1, for color
images, d = 3. Let C be a contour in the image domain Ω.
We define for each point x ∈ Ω the following energy

Ex = λ1

∫

in(C)

K(x− y)|I(y)− f1(x)|2dy

+ λ2

∫

out(C)

K(x− y)|I(y)− f2(x)|2dy (3)

where λ1 and λ2 are positive constants, and K is a weight-
ing function with a localization property that K(u) de-
creases and approaches zero as |u| increases, and f1(x)
and f2(x) are two numbers that fit image intensities near
the point x. We call the point x the center point of the
above integral, and the above energy the local binary fitting
(LBF) energy around the center point x. Since the above
energy Ex depends on the center point x, the contour C,
and two fitting values f1(x) and f2(x), we denote (3) by
ELBF

x (C, f1(x), f2(x)).
In this work, we choose the weighting function K(x) as

a Gaussian kernel

Kσ(x) =
1

(2π)n/2σ
e−|x|

2/2σ2
, (4)

with a scale parameter σ > 0. It should be emphasized that
the numbers f1 and f2 that minimize the energy (3) varies
with the center point x. The significance of such a spatially
varying f1 and f2 makes our method essentially different
from the Chan and Vese’s piecewise constant model.



In the proposed model, the fitting energy in (3) is local-
ized in the sense that the values f1 and f2 only fit the im-
age intensities near each center point x, due to the spatially
varying weighting function K with the above localization
property. This can be clearly explained as the following.
Since the weighting function K(x − y) takes larger values
at the points y near the center point x, and it dramatically
decreases to 0 as y goes away from x, the image intensities
at the points y near the point x have dominant influence
on the values of f1 and f2 that minimize ELBF

x (C, f1, f2)
than the points y far away from the center point x. And
the image intensities at the points y far away from the cen-
ter point x has almost no influence on the values of f1 and
f2 that minimize the ELBF

x (C, f1, f2), since the weight-
ing function K(x − y) approaches zero for large distance
|x− y|.

As mentioned above, the values f1 and f2 that minimize
the LBF energy ELBF

x (C, f1, f2) are functions of the cen-
ter point x due to the spatially varying weighting function
K(x− y). Obviously, for each center point x, the local fit-
ting energy ELBF

x can be minimized when the contour C is
exactly on the object boundary and the fitting values f1 and
f2 are chosen optimally. This is based on a mild assumption
that an image can be locally approximated by a binary im-
age in a neighborhood of any point x, which is satisfied by
many typical real images. For instance, blood vessel images
exhibit such a local binary pattern, as can be seen in Fig. 1.

However, the above energy ELBF
x is defined locally for

a center point x ∈ Ω. To find the entire object boundary,
we must minimize ELBF

x for all the center points x in the
image domain Ω. This can be achieved by minimize the
integral of ELBF

x over all the center point x in the image
domain Ω. So, we define the following energy functional

E(C, f1, f2) =
∫

Ω

ELBF
x (C, f1(x), f2(x))dx (5)

This energy is computed from the image data I , so we call it
an external energy. We will introduce some internal energy
terms to regularize the contours.

2.2. Variational level set formulation of the model

In level set methods, a contour C ⊂ Ω is represented
by the zero level set of a Lipschitz function φ : Ω → <.
With the level set representation, the energy functional
ELBF (C, f1(x), f2(x)) can be rewritten as

ELBF
x (φ, f1, f2)

= λ1

∫
Kσ(x− y)|I(y)− f1(x)|2H(φ(y))dy

+λ2

∫
Kσ(x− y)|I(y)− f2(x)|2(1−H(φ(y))dy (6)

where H is the Heaviside function. Thus, the fitting energy
E in Eq. (5) can be written as

ELBF (φ, f1, f2) =
∫
Ω

ELBF
x dx

= λ1

∫
[
∫

Kσ(x− y)|I(y)− f1(x)|2H(φ(y))dy]dx
+λ2

∫
[
∫

Kσ(x− y)|I(y)− f2(x)|2(1−H(φ(y))dy]dx
(7)

In order to ensure stable evolution of the level set function
φ, we add the distance regularizing term in Li et al’s varia-
tional level set formulation [9] to penalize the deviation of
the level set function φ from a signed distance function. The
deviation of the level set function φ from a signed distance
function is characterized by the following integral

D(φ) =
∫

Ω

1
2
(|Oφ(x)| − 1)2dx (8)

To regularize the zero level contour of φ, we also need the
length of the zero level curve (surface) of φ, which is given
by

L(φ) =
∫

Ω

δ(φ(x))|Oφ(x)|dx (9)

Now, we define the entire energy functional

F (φ, f1, f2) = ELBF (φ, f1, f2) + βD(φ) + νL(φ) (10)

where β and ν are nonnegative constants.
In practice, the Heaviside function H in Eq. (6) is ap-

proximated by a smooth function Hε defined by

Hε(x) =
1
2
[1 +

2
π

arctan(
x

ε
)] (11)

The derivative of Hε is the following smooth function

δε(x) = H ′
ε(x) =

1
π

ε

ε2 + x2
(12)

By replacing H and δ in (7) and (9) with Hε and δε, the
energy functionals ELBF and L are regularized as ELBF

ε

and Lε. As in [2, 17], we choose ε = 1.0 for good ap-
proximation of H and δ by Hε and δε. Thus, the energy
functional F (φ, f1, f2) in (10) is approximated by

Fε(φ, f1, f2) = ELBF
ε (φ, f1, f2)+βD(φ)+νLε(φ) (13)

This is the energy functional we will minimize to find the
object boundary.

2.3. Gradient Descent Flow

For a fixed level set function φ, we minimize the func-
tional Fε(φ, f1, f2) in (13) with respect to the functions
f1(x) and f2(x). By calculus of variations, it can be
shown that the functions f1(x) and f2(x) that minimize



Fε(φ, f1, f2) for a fixed function φ satisfy the following
Euler-Lagrange equations:

∫
Kσ(x− y)Hε(φ(y))(I(y)− f1(x))dy = 0 (14)

and
∫

Kσ(x−y)[1−Hε(φ(y))](I(y)− f2(x))dy = 0 (15)

From (14) and (15), it follows

f1(x) =
Kσ(x) ∗ [Hε(φ(x))I(x)]

Kσ(x) ∗Hε(φ(x))
(16)

and

f2(x) =
Kσ(x) ∗ [(1−Hε(φ(x)))I(x)]

Kσ(x) ∗ [1−Hε(φ(x))]
(17)

which minimize the energy functional Fε(φ, f1, f2) for a
fixed φ. Note that the denominators in (16) and (17) are
always positive, due to the fact that Hε(φ) > 0 and 1 −
Hε(φ) > 0 by the definition of Hε in (11).

Keeping f1 and f2 fixed, and minimizing the energy
functional Fε(φ, f1, f2) with respect to φ, we derive the gra-
dient descent flow:

∂φ

∂t
= −δε(φ)(λ1e1 − λ2e2) + νδε(φ)div

( Oφ

|Oφ|
)

+ β

(
O2φ− div

( Oφ

|Oφ|
))

(18)

where δε is the smooth Dirac function given by (12), and e1

and e2 are the functions as below

e1(x) =
∫

Ω

Kσ(y − x)|I(x)− f1(y)|2dy (19)

and

e2(x) =
∫

Ω

Kσ(y − x)|I(x)− f2(y)|2dy (20)

where f1 and f2 are given by (16) and (17), respectively.
The above equation (18) is the proposed implicit active con-
tour model in this paper.

2.4. Advantages of our model

In contrast to PS model [17], in our model, it is not nec-
essary to regularize the fitting function f1 and f2. It fact, it
is easy to prove that the functions f1 and f2 minimizing the
functional (13) is given by (16) and (17), which are smooth
functions due to the Gaussian convolutions in the derived
formula (16) and (17). Moreover, there is no need of exten-
sion of f1 and f2 in our model, they are naturally defined
on the full domain Ω.

Figure 2. Application to two real blood vessel images and a syn-
thetic image. Upper row: Original images and initial contours.
Lower row: Final contours.

(a) Initial contour. (b) 5 iterations.

(c) 15 iterations. (d) 60 iterations.

Figure 3. Application to a noisy synthetic image.

Another advantage of our model is that no reinitialization
is necessary in our method, due to the distance regularizing
term (8). Moreover, our method with this distance regular-
izing term allows for flexible initialization of level set func-
tion φ. For example, we can simply initialize φ as a binary
function, which takes a constant value c0 in a region R0 and
−c0 outside of R0, where R0 can be an arbitrarily given
subset in the image domain Ω. Such simple initialization is
not only efficient, but also has other desirable advantages,
which we will demonstrate in Section 3.

3. Implementation and results
To compute the function f1 and f2 given by Eq. (16) and

(17), we use the efficient FFT to compute the four convo-
lution operations. The term λ1e1 − λ2e2 in (18) can be
written as a linear combination of three convolutions, and is
also computed by FFT in our current implementation. Note



(a) Original MR image. (b) Thresholding.

(c) Initial contours. (d) 10 iterations.

(e) 50 iterations. (f) 200 iterations.

Figure 4. Application to white matter segmentation for MR image.

that there are more efficient algorithm than FFT for per-
forming convolution [5]. All the partial derivatives ∂φ

∂x and
∂φ
∂y in (18) are approximated using standard finite difference
scheme in [2].

3.1. Results for synthetic and real images

Our method has been applied to synthetic and real im-
ages of different modalities. Some examples are shown
in Fig. 2, 3 4, and 5. We use the same parameters of
ν = 0.001×2552, time step τ = 0.1, β = 1.0, and σ = 3.0,
λ1 = λ2 = 1.0 for all the images in this paper, except the
one in Fig. 4, for which we set ν = 0.003× 2552, λ1 = 1.0
and λ2 = 2.0. The level set is initialized as the binary func-
tion introduced in Section 2.4.

This work was originally motivated by our research on
medical image segmentation. We first show the results of
our method for the two blood vessel images in the third
and fourth rows in Fig. 2. In these images, both the back-
ground and the vessels exhibit obvious intensity inhomo-
geneity, and part of the vessel boundaries in these two im-
ages are quite weak. The image in the third column is the
same synthetic image in Fig. 1, for which the PC model
fails to segment the object correctly. Fig. 2 show desirable
results of our method for these challenging images. Fig. 3

Figure 5. Results for a real color image of potatoes. Row 1: Con-
tours on the original image; Row 2: Image f1; Row 3: Image f2;
Row 4: Fitting image Hε(φ)f1 + (1−Hε(φ))f2.

shows a synthetic image contaminated with high level noise.
It is clearly seen that the intensities are not homogeneous in
either the background or the three objects. Our method suc-
cessfully extracts the object boundaries in this image.

Fig. 4(a) shows the result for a coronal slice of an MR
image of human brain. The region of our interest is the
white matter in this image. However, this image shows ob-
vious intensity inhomogeneity in the white matter, as can
be seen clearly in Fig. 4(a). In fact, the intensity of white
matter in the upper part is even smaller than that of the gray
matter in the lower part. We first show a thresholding re-
sult in Fig. 4(b), which is obviously not correct. As we will
show later, the PS model also have difficulty for this type of
images. The second and the third rows show the evolution
of the active contour in our model. Obviously, our method is
able to segment the white matter in this image successfully,
as shown in the lower right figure in Fig. 4.

The proposed method has also been applied to 3D mag-
netic resonance angiography (MRA) images for segmenta-
tion of cerebral vasculature. For example, Fig. 6(a) shows
the MIP of a 3D MRA image. The image size is 300×300×
60 voxels with spacing of 0.195mm×0.195mm×0.5mm.
For this 3D image, we use the parameters λ = 0.01× 2552,
τ = 0.1, β = 1.0, and σ = 2.0. The final surface obtained
by our method is shown in Fig. 6(b).

Since our method is formulated for vector valued images,



(a) MIP (b) Final surface of our
method

Figure 6. Application to 3D MRA image segmentation.

it can be readily applied to color images. Fig 5 shows the
results for a real color image of potatoes, which demon-
strates the joint segmentation and denoising by using the
LBF model. The first row plots the active contours on the
original images from its initial to converged state. The sec-
ond and third rows show the corresponding fitting image f1

and f2, computed by (16) and (17) respectively.

3.2. Image denoising by local binary fitting

As a natural application of our LBF model, the final fit-
ting functions f1 and f2 and the level set function φ can be
used for image denoising. We define the following fitting
image

f = Hε(φ)f1 + (1−Hε(φ))f2 (21)

The above computed image f can be used to approximate
the original image while reducing the noise.

The fourth row in Fig. 5 shows the evolution of the fitting
image f computed by (21). When the level set function
φ converges, the fitting image f (shown in the right most
images in the fourth row) fits the original image very well
with noise significantly reduced. Moreover, the features in
the original image, such as the boundaries of meaningful
regions are enhanced.

3.3. A few remarks

As mentioned in Section 2.4, our model allows flexible
initialization of level set function. With the binary initial-
ization introduced in Section 2.4, the level set function φ
can more easily develop new contours (zero level contours),
which is necessary for segmentation of multiple separate
objects (see Fig. 3 for example) or objects with holes.

In situations where only one region is of interest, such
as the white matter in Fig. 4, we can choose larger weight
ν of the length term to prevent the emergence of new con-
tour. For the MR image, we use ν = 0.003 ∗ 2552. Note
that, the image in the second vessel image in Fig. 2 includes
some minor vessels/branchs that are not detected by using
the above given set of parameters. To detect those minor
structures, we can choose a smaller value of ν.

Note that, the distance regularizing term in our model is
necessary for stable curve evolution and accurate computa-
tion. In general, we suggest to use the distance regularizing
term with coefficient β = 1.0.

3.4. Comparison with piecewise smooth model

The results of Chan and Vese’s piecewise constant model
(shown in Fig. 1) and the results of our method (Fig. 2) have
demonstrated the advantage of our method. Since the PS
models outperform other standard active contour models in
the presence of image inhomogeneity, we focus on compar-
ing our model with PS model in terms of the computational
efficiency and accuracy.

We have implemented Vese and Chan’s PS model in [17].
In our implementation of the PS model in [17], reinitializa-
tion is required. Without reinitialization, the active contours
move very slowly, or even stop moving after a few itera-
tions. By contrast, due to the distance regularizing term (8)
proposed by Li et al [9] in our LBF energy functional (13),
no reinitialization is necessary.

Fig. 7 shows the results of our and Vese-Chan’s meth-
ods using the same initial contours. The upper and the
lower rows show the results of our method and Vese-Chan
method, respectively. The CPU time for these images are
listed in Table 1. The CPU time is recorded for our Matlab
code that was run on a Dell Dimension 4600 PC, with Pen-
tium 4 processor, 2.80 GHz, 1GB RAM, with Matlab 6.5
on Windows XP. From Table 1, it is obvious that our model
is significantly faster than the PS model. For the images in
Fig. 7), our model is about 15 to 40 times faster than the PS
model.

In terms of accuracy, the results for the first four images
show that our model and PS model have similar final results.
Note that the result of PS model in the second column was
obtained by carefully choosing an initial contour (the two
object boundaries on the right were missing when using the
initial contour in Fig. 3(a) for the PS model). For the MR
image, our method extracts the white matter boundary ac-
curately without generating unwanted contours that are seen
in the result of PS model. We can see that the final contour
of the PS model is partly attracted to the boundary of gray
matter, and therefore lose some part of white matter bound-
ary. Certainly, by tuning the parameter ν, the PS model
can also avoid those unwanted contours, but it comes at the
cost of further losing fine details in the white matter bound-
ary. The right most column in Fig. 7 is an enlarged view
of the lower left portion of the figures in the fifth column,
which shows relatively more accurate recovery of the de-
sired object boundaries by our method, compared with the
PS model. The accuracy of our method is due to its abil-
ity of utilizing local image information by the local binary
fitting framework.



Figure 7. Comparison of our method with PS model. The initial contours and the final contours are plotted as the dashed green contours
and solid red contours, respectively. Upper row: The results of our method; Lower row: The results of PS model.

Img1 Img2 Img3 Img4 Img5
LBF 1.78 2.42 25.52 11.85 9.81
PS 39.92 101.89 398.45 203.03 120.52

Table 1. CPU time (in second) for LBF model and Vese-Chan’s
PS model for the images in Fig. 7 in the same order.

4. Conclusions and future work
In this paper, we propose a novel region-based active

contour model for image segmentation with a variational
level set formulation. By introducing a local binary fitting
energy, the proposed method is able to utilize accurate local
image information for accurate recovery of desired object
boundary. Our method is able to segment images with non-
homogeneous regions, weak object boundaries, and vessel-
like structures. Comparison with typical region based ac-
tive contour models shows the advantages of our method in
terms of accuracy and efficiency. In addition, the proposed
method has promising application for image denoising. In
our future work, we will extend our method to handle re-
gions with triple junctions. This could be achieved by us-
ing a multiphase level set framework. In addition, our cur-
rent algorithm will be implemented with narrow band tech-
niques to further speed up the computation.
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