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Abstract

In this paper, several efficient rearrangement algorithms are proposed to find the optimal
shape and topology for elliptic eigenvalue problems with inhomogeneous structures. The goal
is to solve minimization and maximization of the k−th eigenvalue and maximization of spec-
trum ratios of the second order elliptic differential operator. Physically, these problems are
motivated by the frequency control based on density distribution of vibrating membranes. The
methods proposed are based on Rayleigh quotient formulation of eigenvalues and rearrangement
algorithms which can handle topology changes automatically. Due to the efficient rearrange-
ment strategy, the new proposed methods are more efficient than classical level set approaches
based on shape and/or topological derivatives. Numerous numerical examples are provided to
demonstrate the robustness and efficiency of new approach.

Keywords: Minimal eigenvalue, maximal eigenvalue, maximal ratio of eigenvalues, elliptic
operator, shape optimization, rearrangement algorithm, Rayleigh Quotient

1 Introduction
Shape and topology optimization involving eigenvalues arise naturally in many different fields, such as
mechanical vibrations, electromagnetic cavities, photonic crystals, and population dynamics. Since
it is usually difficult to find the closed-form solution for most shape and topology optimization
problems, numerical approaches become necessary and can sometimes guide analytic approaches.
Common numerical approach is to start with an initial guess for a shape and then gradually evolve
it, until it morphs into an optimal shape. Since the initial guess may not have the same topology as
the optimal shape, it is important to develop numerical techniques to handle topology changes.

The most popular method to evolve the shape is based on the shape derivative [18, 23] which
characterizes the sensitivity of a smooth variation of the boundary. However, this approach suffers
from two main drawbacks: the requirement of a smooth parametrization of the boundary and
the difficulty to accommodate topological changes. To overcome this limitation, homogenization
approaches have been introduced [1, 4]. However, these methods are mainly restricted to linear
elasticity and particular objective functions. In order to have broader applications, developing
numerical techniques which can handle both shape and topology changes becomes essential for
shape and topology optimization problems.

The level set method introduced in [20] has been well known for its ability to handle topology
changes, such as breaking one component into several, merging several components into one and
forming sharp corners. Therefore it has been used naturally to study shape optimization problems.
Instead of using the physically driven velocity, the level set method typically moves the surfaces by the
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gradient flow of an objective energy functional. The approaches based on shape derivatives [22, 5, 13,
19, 15] and/or topological derivatives [6, 2] have been demonstrated to successfully change the shape
flexibly and find the optimal shapes. These approaches have been applied to the study of extremum
problems of eigenvalue of inhomogeneous structure, including identification of composite membranes
with extremum eigenvalue [19, 11, 26], design of composite materials with desired spectrum gap or
maximal spectrum gap [15], finding optical devices which have high quality factor (low loss of
energy) [16], and principle eigenvalue optimization in population biology [14]. Since both shape and
topological derivatives are based on local perturbation of shape, without other special treatments, the
algorithms usually require many iterations to converge. In [10], a multi-level continuation technique
was proposed to accelerate the speed of the algorithm for identification of composite membranes
with extremum eigenvalue. Another type of efficient approaches for minimizing the first eigenvalue
is the binary update based on finding the threshold in principle eigenfunction [7, 14, 24].

In this work, the focus is placed on the study of structural vibration frequency control of acous-
tic drum problems based on changing the density distribution. We proposed several rearrangement
algorithms to find the optimal density distribution with prescribed mass constraint so that the k−th
frequency and ratio of frequencies of the resulting membrane is extremized. Most of previous re-
sults are for the first eigenmode with Dirichlet boundary condition. Here we study general higher
eigenmodes with different boundary conditions. The approaches are based on Rayleigh quotient
formulation of eigenvalues and rearrangement algorithms which not only handle topological changes
automatically but also converges efficiently. Additionally, the number of iteration for convergence
does not really increase when the mesh is refined. We further introduce fully rearrangement and par-
tial rearrangement algorithms to alter the density in the global and local ways. The fully rearrange-
ment approach looks for the optimal rearrangement at each iteration while the partial rearrangement
approach takes moderate changes to generate satisfactory result. The approaches based on shape
derivatives and topological derivatives can be considered as examples of partial rearrangements.

The paper is organized as follows: in section 2, the mathematical formulation of the eigen-
value problem for inhomogeneous vibrating membranes is introduced and some of theoretical results
are reviewed. In section 3, we present new approaches based on Rayleigh quotient formulation of
eigenvalues and several different rearrangement algorithms. In section 4, we discuss the numerical
implementation. To demonstrate the capability and efficiency of the numerical approach, we apply
it to solve many different elliptic eigenvalue extremum problems in inhomogeneous medium.

2 Inhomogeneous Vibrating Membranes

2.1 Mathematical Formulation
Here we consider a vibrating membrane with a fixed bounded domain D ⊂ <n, and a variable density
ρ(x). The displacement from rest, u, of a membrane satisfies

−∆u(x) = λρ(x)u(x), for x ∈ D, (1)

where λ is the eigenvalue of the membrane and it is related to the square of vibrating frequencies.
This equation arises from the reduction of wave equation. Depending on the boundary condition

∂u

∂n
+ βu = 0, for x∈ ∂D, (2)

where β is a constant parameter, the spectrum of eigenvalues has different properties. For clamped
membranes, u(x) = 0 for x ∈ ∂D (Dirichlet boundary condition, i.e. β =∞), there exists a sequence
of such eigenvalues

0 < λ1(ρ) < λ2(ρ) ≤ λ3(ρ) ≤ ... ≤ λk(ρ) ≤ λk+1(ρ) ≤ ... ↑ ∞,
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where each λk(ρ,D) is counted with its multiplicity. However, for boundary which can move freely,
∂u/∂n = 0 for x ∈ ∂D (Neumann boundary condition, i.e. β = 0), the spectrum consists of
eigenvalues

0 = λ0(ρ) ≤ λ1(ρ) ≤ λ2(ρ) ≤ ... ≤ λk(ρ) ≤ λk+1(ρ) ≤ ... ↑ ∞.
Different boundary conditions and density configurations give different eigenvalue distributions. Un-
der the assumption of fixed weight and boundness, i.e.ˆ

D

ρ(x)dx = W and ρ1 ≤ ρ(x) ≤ ρ2, (3)

where ρ1, ρ2, and W are prescribed positive constants, we want to find the optimal density distri-
bution that solves the following extremal eigenvalue problems:

min
ρ(x)

λk ,max
ρ(x)

λk, or max
ρ(x)

λk2/λk1 , (4)

for a given fixed k or both k1 and k2.

2.2 Some Theoretical Results
The optimal density distribution for minimization and maximization of a specific eigenvalue λk in
one dimension, which describes the vibration of ropes, satisfies

−u
′′
(x) = λρ(x)u(x),

in the domain x ∈ (0, 1), with the zero Dirichlet boundary conditions, i.e.

u(0) = u(1) = 0,

was found by Krein [17]. He proved that the optimal density distributions with the constraint´ 1

0
ρ(x)dx = W = ρ1γ + ρ2(1− γ) which minimize (maximize) the k−th eigenvalue are ρ̌γk (ρ̂γk):

ρ̌γk(x) =

{
ρ2 if x ∈

(
mj
k −

1−γ
2k ,m

j
k + 1−γ

2k

)
, j = 1, 2, ..., k,

ρ1 otherwise,

ρ̂γk(x) =

{
ρ1 if x ∈

(
mj
k −

γ
2k ,m

j
k + γ

2k

)
, j = 1, 2, ..., k,

ρ2 otherwise,

where mj
k = (2j − 1)/2k is the midpoint of the interval ((j − 1) /k, j/k) . The interesting feature of

these solutions is the “bang-bang” structure of the density, i.e. the density is a piecewise constant
function. Later Cox and McLaughlin [8] studied the membrane vibration problem (1) with Dirichlet
boundary condition. They addressed the existence of the extremizers and found that the extremizers
also have “bang bang” structure. Additionally, the interface between two different densities can be
characterized by a level set curve of the eigenfunction. For example, let ρ̃ be a minimizer (maximizer)
of λ1(ρ) and u1 be the associated eigenfunction, then there exists a constant uT such that, for each
x ∈ D, {

ρ̃(x) = ρ2(ρ1) if u1(x) > uT ,
ρ̃(x) = ρ1(ρ2) if u1(x) < uT ,

and
ρ̃(Ω) = ρ1χD\Ω + ρ2χΩ(ρ2χD\Ω + ρ1χΩ, ),

where Ω is the level set Ω = {x ∈ D|u1(x) ≥ uT }. We remark here that the maximizer is unique
while the uniqueness of the minimizer is not guaranteed. In particular, a dumbbell shaped domain
under certain setting will give at least two minimizers and the complement of each optimal set is
contained in one of the lobes [12].
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3 Numerical Methods
The numerical approach for minimizing (maximizing) eigenvalue problems consists of two parts: (1)
forward solver: given a density distribution ρ, find its corresponding eigenvalues λk and eigenfunc-
tions uk, and (2) inverse solver: given eigenvalues and eigenfunctions, determine the new distribution
of ρ such that the objective function decreases (increases).

3.1 Finite Element Forward Solver
In order to do computation on complicated domains with a given density function ρ, we use finite
element method (FEM) to solve (1) and (2). We assume that ρ is constant in each element. First,
the eigenfunction is expanded in the FEM basis (u =

∑i=n
i=1 U

h
i ξi where ξi are basis functions), and

then plugging into the equation which was multiplied by a test basis function, and then integrated
on the domain D. This process yields a generalized eigenvalue equation which can be solved by the
Arnoldi algorithm. It can be implemented easily by using the Matlab Partial Differential Equation
Toolbox subrountine “pdeeig”.

3.2 Fully Sorting Algorithm for Minimization of λk
We start with finding the optimal density configuration ρ which minimizes the eigenvalue λk of
(1) with the boundary condition (2) and the constraint (3). The main tool in this endeavor is the
variational characterization of eigenvalues as the Poincaré principle or Courant-Fischer formulae
[21, 12]. Define the Rayleigh quotient of the second order elliptic operator L as

RL[v] :=

´
D
|∇v|2dx+ β

´
∂D

v2(x)dx´
D
ρ(x)v(x)2dx

.

Then, we have
λDk = min

v ∈ H1
0 (D)

v orthogonal to u1, u2, ..., uk−1

RL(v),

where uk is the k−th eigenfunction for Dirichlet boundary condition and

λ
N(R)
k = min

v ∈ H1(D)
v orthogonal to u1, u2, ..., uk−1

RL(v),

for Neumann (Robin) boundary conditions. Suppose the initial density is

ρ =

{
ρ1 for x ∈ D/Ω
ρ2 for x ∈ Ω

,

where Ω ⊂ D is a bounded subset inside D. The gradient descend approach [19] lies on the compu-
tation of the gradient of a simple k−th eigenvalue λk

δλk = −
λk
´
D
δρ · u2

kdx´
D
ρu2

kdx
. (5)

If we choose δρ = au2
k where a is a positive constant, a descent direction is guaranteed because

δλk < 0. This descent direction implies that the eigenvalue λk decreases as the density function
ρ(x) increases quadratically in u. However, this approach cannot allow piecewise distributions of
the density.
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Instead, an iterative fully sorting algorithm can be used so that the constraint on the density
function is always satisfied. The minimization problem for the first eigenvalue is a good play to start
a description of the algorithm. The task is to find

min
ρ(x)

λ1 = min
ρ(x)

min
v∈H1

0

´
D
|∇v|2dx+ β

´
∂D

v2(x)dx´
D
ρ(x)v(x)2dx

.

Assume the eigenfunctions are normalized by
´
D
ρ(x)v(x)2dx = 1. At iteration step i, there is

a guess for the configuration density function ρi. Use the forward problem solver described in the
previous section to find the corresponding eigenvalue λ1(ρi) and eigenfunction u1(ρi). For simplicity,
denote them the eigenpair (λ1,i, u1,i). Thus

λ1,i =

´
D
|∇u1,i|2dx+ β

´
∂D

u2
1,i(x)dx´

D
ρiu1,i(x)2dx

.

Our goal is to find a density function ρ(x) so that it can maximize the integral of the form
ˆ
D

ρu2
1,idx. (6)

Suppose ρi+1 is a new guess, such that
ˆ
D

ρi+1u2
1,idx ≥

ˆ
D

ρiu2
1,idx.

Then, a new estimate for λ1,i+1 will be smaller since

λ1,i+1 = min
v∈H1

0

´
D
|∇v|2dx+ β

´
∂D

v2(x)dx´
D
ρi+1(x)v(x)2dx

=

´
D
|∇u1,i+1|2dx+ β

´
∂D

u2
1,i+1(x)dx´

D
ρi+1u1,i+1(x)2dx

≤
´
D
|∇u1,i|2dx+ β

´
∂D

u2
1,i(x)dx´

D
ρi+1u1,i(x)2dx

≤
´
D
|∇u1,i|2dx+ β

´
∂D

u2
1,i(x)dx´

D
ρiu1,i(x)2dx

= λ1,i. (7)

Therefore, the monotone decreasing sequence {λ1,i} determined by (7) must converge since it has a
lower bound. The success of the procedure (7) depends on whether we can find a density function
so that it maximizes an integral of the form (6).

Assume N is the total number of nodal points and dj is the density function evaluated at each
grid point Pj , that is, dj = ρ(Pj). Representing the density function as

ρ ≈
N∑
j=1

djξj ,

the integral (6) becomes

ˆ
D

ρu2
1,idx =

N∑
j=1

dj

ˆ
D

ξju
2
1,idx =

N∑
i=1

djψj ,

where ψj =
´
D
ξju

2
1,idx. Similarly, a discrete approximation to the fixed weight constraint (3) is

N∑
j=1

djΞj = W, where Ξj =

ˆ
D

ξjdx. (8)
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Thus, in the discrete level, (6) can now be stated as

max
d=(d1,...,dN )

N∑
j=1

djψj , (9)

subjects to constraints (8) and dj ∈ {ρ1, ρ2}. (Note that the representation here may vary with
respect to different finite element basis functions used.) This problem can be solved by using the
following rearrangement inequality:

Rearrangement Inequality [25]. Let

a1 ≤ a2 ≤ ... ≤ an and b1 ≤ b2 ≤ ... ≤ bn

be ordered sequences of real numbers. The inequality

anb1 + ...+ a1bn ≤ aσ(1)b1 + aσ(2)b2 + ...+ aσ(n)bn ≤ a1b1 + a2b2 + ...+ anbn

holds for every choice of permutation
aσ(1), ..., aσ(n)

of a1, ..., an.
This rearrangement inequality indicates that we should arrange dj in the same order of ψj in

order to achieve maximum. Physically, it means to place higher density material in the regions that
the displacement is large. Notice that the density function values dj is binary and (8) can be written

ρ1

∑
{j:dj=ρ1}

Ξj + ρ2

∑
{j:dj=ρ2}

Ξj = ρ1(|D| − |Ω|) + ρ2(|Ω|) = W. (10)

This leads directly to the statement

|Ω| = W − ρ1|D|
ρ2 − ρ1

which is the criterion for determining the threshold of the density function.
Remark 1: The rearrangement method we just described is essentially an alternating minimiza-

tion with respect to ρ (rearrangement) and u (Rayleight principle). The efficiency of the algorithm
is mainly due to the exact solution of the problem with respect to ρ for a fixed u.

Remark 2: In our numerical computation on a triangular mesh, we interpolate the values from
the vertices to the value on the centroid in each triangle. In particular, a uniform triangular mesh is
used to reduce possible effects from meshes. This is because the areas of triangular elements affect
the sorting. If a uniform mesh is used in the numerical implementation, Ξj ’s are mostly the same
for every j and Ξj ≈ |D|N . Thus, the threshold for distinguishing ρ1 and ρ2 will be at index

j∗ =
|D| − |Ω|

Ξj
=

(ρ2|D| −W )/(ρ2 − ρ1)

|D|/N
, (11)

and the density is assigned as

ρ1 = d1 = ...dj∗ < dj∗+1 = ... = dN = ρ2. (12)

Notice that in this setting, only the square value (uj1,i)
2 are used for sorting ψj . We summarize the

algorithm for fully sorting algorithm in Algorithm 1.
Remark 3: This fully sorting algorithm can be directly applied to solve simple λk for k ≥

2. Since there is a possibility that the k−th eigenvalue collides with its lower eigenvalues ((k −
1)-th eigenvalue or more), multiple eigenfunctions need to be considered while updating density
distribution. We will address this in Section 3.6.
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Algorithm 1 Fully sorting algorithm for minimization
initial guess for ρ(x)
do while not optimal
1. solve the elliptic eigenvalue problem (1) by the forward finite element method
2. sort ψj in the ascending order and compute the threshold index j∗ as defined by (11)
3. update ρ(x) by the process (12)

3.3 The Maximization of λk
The maximization problem becomes much more complicated since we have to deal with the maxmin
case instead of minmin case. For the optimization problem

max
ρ(x)

λ1 = max
ρ(x)

min
v∈H1

0

´
D
|∇v|2dx+ β

´
∂D

v2(x)dx´
D
ρ(x)v(x)2dx

.

At the iteration step i, we seek the density function ρi+1, such that
ˆ
D

ρi+1u2
1,idx ≤

ˆ
D

ρiu2
1,idx. (13)

In this way, we have

λ1,i+1 =

´
D
|∇u1,i+1|2dx+ β

´
D
u2

1,i+1(x)dx´
D
ρi+1u1,i+1(x)2dx

≤
´
D
|∇u1,i|2dx+ β

´
D
u2

1,i(x)dx´
D
ρi+1u1,i(x)2dx

, (14)

and

λ1,i =

´
D
|∇u1,i|2dx+ β

´
D
u2

1,i(x)dx´
D
ρiu1,i(x)2dx

≤
´
D
|∇u1,i|2dx+ β

´
D
u2

1,i(x)dx´
D
ρi+1u1,i(x)2dx

. (15)

However, unlike the monotone property established in (7), the inequalities (14) and (15) do not
guarantee a monotone increasing sequence and we need to add an acceptance- rejection step. After
updating the density function, we will run the forward eigenvalue solver to check if the new config-
uration actually increases the eigenvalue. If the eigenvalue is increasing, the new configuration of
the density function will be accepted. Otherwise, we will use Partial Swapping Method which will
be introduced in Section 3.5.

In the discrete setting, the criterion (13) corresponds to arrange dj is the reversed order of ψj in
order to achieve the minimum. (See Rearrangement Inequality). This suggests that we should
update the density function by placing lower density material at the locations with large ψ values
and vice versa. Adopting the definition of threshold index j∗ in (11), the updating process of the
density function can be formulated as

ρ2 = d1 = ... = dN−j∗ > dN−j∗+1 = ... = dN = ρ1. (16)

The sorting method as discussed above can be easily generalized to higher eigemodes by replacing
the first eigenvalue λ1 and its eigenfunction u1 by the k−th eigenvalue λk and the corresponding
eigenfunction uk. We summarize the maximum algorithm in Algorithm 2.
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Algorithm 2 Fully sorting algorithm for minimizaion
initial guess for ρ(x)
solve the elliptic eigenvalue problem (1) by the forward finite element method
do while not optimal
1. sort ψj in the ascending order and compute the threshold index j∗ as defined by (11)
2. update ρ(x) by the process (16)
3. solve the elliptic eigenvalue problem (1) using the updated ρ(x)
• if the eigenvalue increases, accept ρ(x)
• if not, use Partial Swapping Method to generate a new ρ(x)

3.4 The Maximization of λk2/λk1
The third type of optimization problem we are interested in is

max
ρ(x)

λDk2
λDk1

= max

min

v ∈ H1
0 (Ω)

´
D
|∇v|2dx+β

´
∂D

v2(x)dx´
D
ρ(x)v(x)2dx

v orthogonal to u1, u2, ..., uk2−1

min

v ∈ H1
0 (Ω)

´
D
|∇v|2dx+β

´
∂D

v2(x)dx´
D
ρ(x)v(x)2dx

v orthogonal to u1, u2, ..., uk1−1

.

Different from the minimization or maximization problems of λk, at each iteration i, we need to
consider the ratio

λk2
λk1

=

´
D
|∇uk2

|2dx+β
´
∂D

u2
k2

(x)dx´
D
ρ(x)u2

k2
dx´

D
|∇uk1

|2dx+β
´
∂D

u2
k1

(x)dx´
D
ρ(x)u2

k1
dx

=

´
D
|∇uk2 |2dx+ β

´
∂D

u2
k2

(x)dx´
D
|∇uk1 |2dx+ β

´
∂D

u2
k1

(x)dx
·
´
D
ρ(x)u2

k1
dx´

D
ρ(x)u2

k2
dx
. (17)

Notice that in (17) only the second ratio contains the density function ρ(x). In term of discrete
computation, the same argument for the integral (6) still applies here. Considering the numerator
and the denominator of the second ratio in (17) separately, we have a linear fractional problem

max
d=(d1,d2,...,dN )

∑N
j=1 djψ

k1
j∑N

j=1 djψ
k2
j

, where ψ
k1(2)
j =

ˆ
D

ξju
2
k1(2),i

dx. (18)

subject to the constraints (8) and dj ∈ {ρ1, ρ2}.
Here, we introduce Dinkelbach’s iterative algorithm to solve this linear fractional programing

problem ([3]). Dinkelbach’s algorithm is based on the simple theorem: The vector x∗ is an optimal
solution of problem

max
x∈S

P (x)

Q(x)
(19)

where P (x), Q(x) ≥ 0 are linear functions of x, and S is the feasible set of the optimization problem
if and only if

max
x∈S
{P (x)− t∗Q(x)} = 0 where t∗ =

P (x∗)

Q(x∗)
.

The Dinkelbach’s iterative method to find an optimal solution is summarized in Algorithm 3.
Noting that, when the algorithm is applied to solve (18), the step for solving

argmax
x∈S

{P (x)− t(m)Q(x)} = argmax
d=(d1,d2,...,dN )

N∑
j=1

dj{ψk1j − t
(m)ψk2j }

8



Algorithm 3 Dinkelbach’s Algorithm

initial guess for x(0) ∈ s, calculate t(1) := P (x(0))
Q(x(0))

, set m = 1

do while F (t(m)) 6= 0
1. x(m) := argmaxx∈S{P (x)− t(m)Q(x)}
2. t(m+1) := P (x(m))/Q(x(m)), set m = m+ 1.

Algorithm 4 Algorithm for Maximization the ratio of adjacent eigenvalues
initial guess for ρ(x)
solve the elliptic eigenvalue problem (1) by the forward finite element method
do while not optimal
1. update ρ(x) by solvig (18) via Dinkelbach’s algorithm
2. solve the elliptic eigenvalue problem (1) using the updated ρ(x)
• if the ratio of eigenvalues increases, accept ρ(x).
• if not, use Partial Swapping Method to generate a new ρ(x) via Dinkelbach’s algorithm

is in fact the optimization problem as described in (9), except that ψj is replaced with ψk1j −t(m)ψk2j .
The sorting procedure and updating procedure (12) can be applied immediately to obtain the optimal
configuration. Since this problem is ofmaxmin type too, partial swapping algorithm will be adopted
when the ratio is not increasing. Finally we summarize the method for maximizing the ratio of
adjacent eigenvalues in Algorithm 4.

3.5 Partial Swapping Algorithm
As we can see from equation (15), the monotonicity is not guaranteed. When a configuration of
the density function through fully sorting method does not increase the eigenvalue or the ratio of
eigenvalues, the partial swapping method will be used. Figure (1) illustrates this method. Let set
A (within the red circle) be the current configuration of the density function with value ρ1, and set
B (within the blue circle) be the suggested configuration with density value ρ1 which is obtained
from fully sorting method. Left panel in Figure 1 explains the fully sorting method. If the suggested
configuration increases the target eigenvalue we will accept it, that is, switch the density values in
the difference set A\B (light gray region) and B\A (dark gray region). However, if this configuration
fails, we choose subsets of A\B and B\A, say sets C(light gray region) and D (dark gray region) as
labeled in Figure 1 (right panel), and switch their density values. Subsets C and D are of the same
size in order to satisfy the fixed weight assumption. The size of the subsets is a parameter which can
be adjusted. For example, |C| = µ|A\B| and |D| = µ|B\A| where µ ∈ (0, 1). Due to the numerical
discretization, we will choose µ ∈ (ε, 1) where ε is the area ratio of one element and the whole domain
in order to avoid the possibility of empty set in C or D. In our numerical implementation, we kept
halving the size until we reach a density configuration which increases the target eigenvalue. We
follow the sorting idea in selecting the subsets C and D. Take maxρ(x) λ1 for example, at iteration
step i, if the fully sorting method fails, subset C in A\B of prescribed size is generated according to
sorting ψj which is a constant multiple of the squared eigenfunction values in this case, preferring
small values. Contrary to subset C, large squared eigenfunction values are preferred for subset D.
Finally, we switch the density values in C and D instead of A\B and B\A. This kind of swapping
method can easily generate topological changes. This partial swapping technique is summarized in
Algorithm 5. Notice that there are many different ways to do partial swapping algorithm as long as
the swapping sets are chosen differently. Another possible partial swapping algorithm is to swap the
density values near the interface of two densities in the previous iteration. This approach is similar
to the idea of shape derivatives which consider the local variation of density near the interface.

9



Figure 1: An illustration of partial swapping method. Left panel shows the fully sorting method
switch the density values in the difference set A\B (light gray region) and B\A (dark gray region).
Right panel shows the partial swapping method: switch the density values in the subsets C (light
gray region) and D (dark gray region).

Algorithm 5 Partial swapping algorithm
Let set A (within the red circle in Figure 1) be the current configuration of the density function with
value ρ1 and set B (within the blue circle in Figure 1) be the suggested configuration with density
value ρ1 which is obtained from fully sorting method.
Find the difference sets A\B and B\A.
Choose a constant µ ∈ (ε, 1) (In our implementation, µ = 1

2 and ε is the area ratio of one element
and the whole domain)
do while the objective function is not increasing and µ > ε
1. choose subset C in A\B which corresponds to smaller square value of ψj such that |C| = µ|A\B|
2. choose subset D in B\A which corresponds to larger square value of ψj such that |D| = µ|B\A|
3. swap the density in C and D, i.e. ρ(x) = ρ2 in C and ρ(x) = ρ1 in D
• if the objective function increases, accept ρ(x) and terminate the partial swapping algorithm
• if not, reduce µ by half
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3.6 Gradient at eigenvalues with multiplicity greater than one
Here we discuss the strategy for an eigenvalue with multiplicity. The generalized gradient is consid-
ered, as the classical derivative does not exit in this case. In the work of S. Cox [9], the strategy
for computing the generalized gradient of the extreme eigenvalues has been explained and applied
to an elliptic operator. Here we summarize the fundamental results. Recall that the generalized
directional derivative of a Lipschitz function F on the Banach space X at f in the direction of g is

F0(f ; g) = lim sup
h→ f
t ↓ 0

F(h+ tg)−F(h)

t
.

The generalized gradient of F at f is defined by the nonempty, convex, weak∗ compact set

∂F (f) ≡
{
ξ ∈ X ′;F0(f ; g) ≥ {ξ, g}X ∀g ∈ X

}
,

where X ′ denotes the dual space of X. For the elliptic eigenvalue problem (1), we assume an eigen-
value with multiplicity m when ρ = ρ0:

λk−1(ρ0) < λk(ρ0) = ... = λk+m−1(ρ0) < λk+m(ρ0), m > 1.

Then
∂λk(ρ0) = ∂λk+m−1(ρ0) = co

{
−λu2 : u ∈ ε1

k(ρ0)
}
, (20)

where co is the convex hull and ε1
k(ρ) is the span of all eigenfunctions u corresponding to the

eigenvalue λk with the normalization
´
D
ρ0u

2dx = 1. Utilizing the idea in (20), we use the generalized
gradient direction at an eigenvalue with multiplicity m while maximizing of eigenvalue is performed,

−co(u2
j ), j = k, ..., k +m− 1,

where uj is the j−th eigenfunction. For example, for eigenvalues with multiplicity 2, i.e. λk(ρ0) =
λk+1(ρ0), then the linear combination

αu2
k + (1− α)u2

k+1, 0 < α < 1,

is used as the reference function for sorting. In general, a (m−1)−dimensional optimization problem
need to be solved. In the numerical simulation, we will show an example that the right direction in
searching for maximization of λ2 in a square domain is

1

2
u2
k +

1

2
u2
k+1. (21)

4 Numerical Simulation
We first consider solving the optimization problem on a rectangular domain Ω = [0, 1] × [0, 1.5]
described in [19]. We use finite element method with a triangular mesh on Ω to solve the forward
eigenvalue problem. Initially we divide the rectangular into 8 triangles as shown in Figure 2(a) and
then refine the mesh in the standard way by subdividing each triangles into four triangles as shown
in Figure 2(b). The numerical results are done on the 7-th refinement which gives 8× 47 = 131072
triangles. The initial density distribution is chosen as

ρ =

{
ρ1 = 1 if |x− 0.75| ≥ 0.375
ρ2 = 2 if |x− 0.75| < 0.375

(22)
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Figure 2: (a) The inital mesh (b) The first refinement

with W = 2.25. The numerical accuracy of eigenvalues is of second order. The same stopping
criterion is used for all the simulations. That is, when the difference between eigenvalues in two
consecutive iterations is less than 10−6.

In Figure 3, we show the evolution of density distribution for zero, first, and fourth iteration
for minimization of the first eigenvalue λ1 with Dirichlet boundary condition in the first row. The
corresponding eigenfunctions for zero, first, and fourth iteration are shown in the second row re-
spectively. It only takes four iterations in total while the method based on shape derivative requires
hundred of iterations to reach the minimum [19]. We see that the proposed method gives a very good
rearrangement of density distribution in the first iteration. The corresponding eigenvalue evolution
is shown in Figure 4. Furthermore, the number of iteration stays roughly the same while different
sizes of meshes are used.

With the same initial guess (22), we minimize λ2, λ3, and λ4 with Dirichlet boundary condition
and show the numerical optimized density distribution in the first row in Figure 5. The corresponding
eigenvalue evolutions are shown in the second row in Figure 5. The optimized density distributions
have symmetric structure. If the domain is divided by the nodal lines where the eigenfunction is zero,
the density distributions have two-, two-, four-fold symmetry as shown in the second row in Figure
4. We remark here that the rearrangement algorithm does not guarantee the global minimization.
In this numerical test, the optimized density distribution for λ4 is a local minimizer (not the global
minimizer). We repeated the numerical simulations with many different initial guesses of density
distribution and found a smaller optimized density distribution for λ4. The density distribution is
shown at the initial, first and second iterations in Figure 6. For the first to third eigenvalues, the
optimal results turn out to be the same for all different initial conditions we have tried. This tells
us that high eigenmodes are probably more nonconvex in terms of density distribution.

For maximization of eigenvalue problems, we demonstrate the results on the square domain Ω =
[0, 1]× [0, 1] because multiplicity can occur more frequently. Figure 7 shows the results for maxρ λ1

with Dirichlet boundary condition. The calculations start with an initial guess of a trigonometric
wave shape containing density value ρ2, as shown for λ(0)

1 . Subsequent results for iterations 1 (λ(1)
1 )

and 7 (λ(7)
1 ), indicate the approach to the maximum. The "optimal" result (λ(7)

1 ) shows that the
places with larger density value ρ2 are attached to the boundary. The third row in Figure 7 plots
the changes in λ1. The maximal value of λ1 is 18.322.

In Figure 8, we demonstrate that the partial swapping method can also be applied to find the
maximization of λ1. Here the swapping sets C and D are half size of different sets A \B and B \A
mentioned in 3.5. The evolution of density distributions is shown in the first and second rows for
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Figure 3: The evolution of density distributions is shown in the first row for minimization of the
first eigenvalue with Dirichlet boundary condition at 0, 1st, and 4th iterations. The corresponding
eigenfunctions are shown in the second row at 0, 1st, and 4th iterations.

Figure 4: The evolution of eigenvalue for the minimization of the first eigenvalue with Dirichlet
boundary condition.

13



Figure 5: The density distributions for minimization of the second, third, fourth eigenvalues with
Dirichlet boundary condition are shown in the first row respectively. The corresponding eigenvalue
evolutions are shown in the second row.

Figure 6: The density distributions at the initial, 1st, and 2nd iterations for minimization of fourth
eigenvalue with Dirichlet boundary condition.
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Figure 7: The evolution of density distributions is shown in the first row for maximization of the first
eigenvalue with Dirichlet boundary condition at 0, 1st, and 7th iterations. The corresponding eigen-
functions are shown in the second row at 0, 1st, and 7th iterations. The evolution of corresponding
eigenvalues is shown in the third row.
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maximization of the first eigenvalue with Dirichlet boundary condition at 0, 1st, 2nd, 3th, 5th, and
10th iterations. In the third and fourth rows, we show the difference sets at 0, 1st, 2nd, 3th and 5th.
The blue region indicates the set A \B while the red region indicates the set B \A. The evolution
of corresponding eigenvalues is shown in the last figure in the fourth row. A diamond is marked at
the third iteration when the partial swapping method is applied. We see that the topology can be
changed easily during the evolution. At the end, the optimal value of maxλ1 is the same as the
result in the previous example. Notice that the iteration number increases when the partial swapping
method is used. When a smaller size of swapping region is used, the more number of iterations is
needed to converge.

Figure 9 shows the results for maxρ λ2. We perform simulations without and with partial rear-
rangement algorithm in order to see whether partial rearrangement improve the optimization results
in some cases. The calculations start with the same initial guess of a trigonometric wave shape con-
taining density value ρ2, as shown for λ(0)

1 . The subsequent results are shown for iterations 1 (λ(1)
2 )

and 9 (λ(9)
2 ) for fully rearrangement algorithm and 10 (λ

(10)
2 ) for partial rearrangement algorithm.

The “optimal” results show that the places with smaller density value ρ1 looks like a square washer.
We can see that partial rearrangement algorithm provides larger λ2. The evolutions of corresponding
eigenvalues are shown in the center and right figures in the second row for the simulations without
and with partial rearrangement, respectively. A filled star is marked if the generalized gradient
(21) is applied while a diamond shape is marked when partial rearrangement is applied. While we
optimize the second eigenvalue λ2, λ2 and λ3 collide with each other. Thus, the generalized gradient
idea (21) applies here. A linear combination 1

2 (u2
2 + u2

3) is used in the sorting process at each step,
where u2 and u3 are the corresponding eigenfunctions.

Figure 10 shows the results for maxρ λ2 on the rectangular domain. The calculations start with
the same initial guess of a strip containing density value ρ2 as the example in Figure 3. The "optimal"
result (λ(6)

2 ) has the reciprocal rearrangement of denisty for minλ2 shown in 5. Notice that this
optimal density distribution is very different from the result on the square domain shown in Figure
9 since the multiplicity does not occur in the rectangular domain.

We now investigate the role of the Robin boundary parameter β in the maximization problem
maxρ λ

R
3 . Figure 11 shows the optimal results for β = ∞, 10, 1, 0. As β → ∞, the Robin boundary

condition asymptotes to the Dirichlet boundary condition, shown as the first graph in Figure 11. As
β → 0, the Robin boundary condition becomes the Neumann boundary condition, shown as the last
graph in the sequence. There is a gradual change as the two triangle shaped regions with density ρ1

are pushed to the diagonal corners and then morph into two fan-like regions.
For the maximization of the ratio of adjacent eigenvalues, only the Dirichlet Boundary problems

will be considered. Figure 12 shows the results for maxρ λ2/λ1. The calculations start with an
initial guess of a strip containing density value ρ2, as shown for (λ2/λ1)(0), and the subsequent
results for iterations 1 ((λ2/λ1)(1)), 2 ((λ2/λ1)(2)), 3 ((λ2/λ1)(3)) show convergence. It takes 3 steps
to converge. The second row in Figure 12 plots the changes in the individual eigenvalue from λ1 to
λ3 and in the ratio of eigenvalues λ2/λ1. The optimal density distribution is similar to the result of
maxλ2 shown in Figure 10 but very different from the result of minλ1 shown in Figure 3.

Figure 13 shows the results for maxρ λ3/λ2. The calculations start with an initial guess which
is the same as the previous example and the subsequent results for iterations 2 ((λ3/λ2)(2)) and
6 ((λ3/λ2)(6)) are shown. It takes 6 steps to converge. The second row in Figure 13 plots the
changes in the individual eigenvalue from λ1 to λ4 and in the ratio of eigenvalues λ3/λ2. There is
a degeneracy in λ3, so a linear combination 1

2 (u2
3 + u2

4) is used in the sorting process at each step,
where u3−4 are the corresponding eigenfunctions. At the first few iterations, fully sorting method
directly increases the ratio λ3/λ2. However, as the ratio keeps increasing, it becomes harder for the
fully sorting method to directly increase the ratio. Thus the partial swapping is used at the fifth
and sixth iterations and it fine-tunes the result to be optimal.

From the above numerical results, we see that the rearrangement algorithms can efficiently opti-
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Figure 8: The evolution of density distributions is shown in the first and second rows for maxi-
mization of the first eigenvalue with Dirichlet boundary condition at 0, 1st, 2nd, 3th, 5th and , 10th

iterations. The partial swapping method with half of the difference set is applied at each iteration.
In the third and fourth rows, we show the difference sets at 0, 1st, 2nd, 3th and 5th. The blue region
indicates the set A \B while the red region indicates the set B \A. The evolution of corresponding
eigenvalues is shown in the last figure in the fourth row.
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Figure 9: The evolution of density distribution is shown in the first row for maximization of the sec-
ond eigenvalue at 0, 1st and , 9th iterations without partial rearrangement. The evolution of density
distribution at 10th iteration with partial rearrangement. We can see that partial rearrangement
algorithm provides larger λ2. The evolutions of corresponding eigenvalues are shown in the center
and right figures in the second row for the simulations without and with partial rearrangement, re-
spectively. A filled star is marked if the generalized gradient (21) is applied while a diamond shape
is marked when partial rearrangement is applied.
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Figure 10: The evolution of density distributions is shown in the first row for maximization of the
second eigenvalue with Dirichlet boundary condition at 0, 1st, and 6th iterations. The corresponding
eigenfunctions are shown in the second row at 0, 1st, and 6th iterations.

Figure 11: The optimal results of maxρ λ
R
3 for β =∞, 10, 1, 0.
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Figure 12: The evolution of density distributions is shown in the first row for maximization of λ2/λ1.
The evolutions of individual eigenvalue from λ1 to λ3 and the ratio λ2/λ1 are shown in the second
column.
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Figure 13: The evolution of density distributions is shown in the first row for maximization of λ3/λ2.
The evolutions of individual eigenvalue from λ1 to λ4 and the ratio λ3/λ2 are shown in the second
column.

mize the eigenvalue problems: minλk, maxλk, and maxλk2/λk1 . The algorithms are much more effi-
cient than the level set approaches based on shape derivative and/or topological derivative. Whether
or not the rearrangement algorithms converge to the global extremum depends on the initial guess.
For the first few eigenvalues, the algorithms are quite robust in finding the global extremum nu-
merically. The theoretical investigation on the convergence of the algorithms and the convergence
rate requires further study. In this paper, only simple domain geometry and objective functions are
considered. We will investigate these general problems and report them in a future paper.
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