We consider here a homogeneous system of \(n \) first order linear equations with constant, real coefficients:

\[
\begin{align*}
 x_1' &= a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \\
 x_2' &= a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n \\
 &\vdots \\
 x_n' &= a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n
\end{align*}
\]

This system can be written as \(\mathbf{x}' = \mathbf{Ax} \), where

\[
\mathbf{x}(t) = \begin{pmatrix}
 x_1(t) \\
 x_2(t) \\
 \vdots \\
 x_m(t)
\end{pmatrix}, \quad \mathbf{A} = \begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix}
\]
Equilibrium Solutions

- Note that if $n = 1$, then the system reduces to
 \[x' = ax \quad \Rightarrow \quad x(t) = e^{at} \]

- Recall that $x = 0$ is the only equilibrium solution if $a \neq 0$.

- Further, $x = 0$ is an asymptotically stable solution if $a < 0$, since other solutions approach $x = 0$ in this case.

- Also, $x = 0$ is an unstable solution if $a > 0$, since other solutions depart from $x = 0$ in this case.

- For $n > 1$, equilibrium solutions are similarly found by solving $Ax = 0$. We assume $\det A \neq 0$, so that $x = 0$ is the only solution. Determining whether $x = 0$ is asymptotically stable or unstable is an important question here as well.
Phase Plane

- When $n = 2$, then the system reduces to

 \[x'_1 = a_{11}x_1 + a_{12}x_2 \]

 \[x'_2 = a_{21}x_1 + a_{22}x_2 \]

- This case can be visualized in the x_1x_2-plane, which is called the **phase plane**.

- In the phase plane, a direction field can be obtained by evaluating Ax at many points and plotting the resulting vectors, which will be tangent to solution vectors.

- A plot that shows representative solution trajectories is called a **phase portrait**.

- Examples of phase planes, directions fields and phase portraits will be given later in this section.
Solving Homogeneous System

To construct a general solution to $x' = Ax$, assume a solution of the form $x = \xi e^{rt}$, where the exponent r and the constant vector ξ are to be determined.

Substituting $x = \xi e^{rt}$ into $x' = Ax$, we obtain

$$r\xi e^{rt} = A\xi e^{rt} \iff r\xi = A\xi \iff (A - rI)\xi = 0$$

Thus to solve the homogeneous system of differential equations $x' = Ax$, we must find the eigenvalues and eigenvectors of A.

Therefore $x = \xi e^{rt}$ is a solution of $x' = Ax$ provided that r is an eigenvalue and ξ is an eigenvector of the coefficient matrix A.
Example 1: Direction Field (1 of 9)

Consider the homogeneous equation $x' = Ax$ below.

$$x' = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} x$$

A direction field for this system is given below.

Substituting $x = \xi e^{rt}$ in for x, and rewriting system as $(A-rI)\xi = 0$, we obtain

$$\begin{pmatrix} 1-r & 1 \\ 4 & 1-r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
Example 1: Eigenvalues (2 of 9)

Our solution has the form \(\mathbf{x} = \xi e^{rt} \), where \(r \) and \(\xi \) are found by solving

\[
\begin{pmatrix}
1-r & 1 \\
4 & 1-r
\end{pmatrix}
\begin{pmatrix}
\xi \\
\xi_1
\end{pmatrix}
=
\begin{pmatrix}
0 \\
0
\end{pmatrix}
\]

Recalling that this is an eigenvalue problem, we determine \(r \) by solving \(\det(\mathbf{A} - r\mathbf{I}) = 0 \):

\[
\begin{vmatrix}
1-r & 1 \\
4 & 1-r
\end{vmatrix} = (1-r)^2 - 4 = r^2 - 2r - 3 = (r - 3)(r + 1)
\]

Thus \(r_1 = 3 \) and \(r_2 = -1 \).
Example 1: First Eigenvector (3 of 9)

Eigenvector for $r_1 = 3$: Solve

\[(A - rI)\xi = 0 \iff \begin{pmatrix} 1 & -3 & 1 \\ 4 & 1 & -3 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff \begin{pmatrix} -2 & 1 \\ 4 & -2 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}\]

by row reducing the augmented matrix:

\[
\begin{pmatrix} -2 & 1 & 0 \\ 4 & -2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1/2 & 0 \\ 4 & -2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1/2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 \xi_1 & -1/2 \xi_2 = 0 \\ 0 \xi_2 = 0 \end{pmatrix}
\]

\[
\rightarrow \xi^{(1)} = \begin{pmatrix} 1/2 \xi_2 \\ \xi_2 \end{pmatrix} = c \begin{pmatrix} 1/2 \\ 1 \end{pmatrix}, \ c \text{ arbitrary} \rightarrow \text{choose } \xi^{(1)} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}
\]
Example 1: Second Eigenvector (4 of 9)

Eigenvector for $r_2 = -1$: Solve

$$ (A - rI)\xi = 0 \iff \begin{pmatrix} 1+1 & 1 \\ 4 & 1+1 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff \begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} $$

by row reducing the augmented matrix:

$$ \begin{pmatrix} 2 & 1 & 0 \\ 4 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1/2 & 0 \\ 4 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1/2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow 1\xi_1 + 1/2\xi_2 = 0 $$

$$ 0\xi_2 = 0 $$

$$ \xi^{(2)} = \begin{pmatrix} -1/2\xi_2 \\ \xi_2 \end{pmatrix} = c \begin{pmatrix} -1/2 \\ 1 \end{pmatrix}, \ c \text{ arbitrary} \rightarrow \text{choose } \xi^{(2)} = \begin{pmatrix} 1 \\ -2 \end{pmatrix} $$
Example 1: General Solution (5 of 9)

The corresponding solutions $x = \xi e^{rt}$ of $x' = Ax$ are

$$x^{(1)}(t) = \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{3t}, \quad x^{(2)}(t) = \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{-t}$$

The Wronskian of these two solutions is

$$W[x^{(1)}, x^{(2)}](t) = \begin{vmatrix} e^{3t} & e^{-t} \\ 2e^{3t} & -2e^{-t} \end{vmatrix} = -4e^{-2t} \neq 0$$

Thus $x^{(1)}$ and $x^{(2)}$ are fundamental solutions, and the general solution of $x' = Ax$ is

$$x(t) = c_1 x^{(1)}(t) + c_2 x^{(2)}(t)$$

$$= c_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{3t} + c_2 \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{-t}$$
Example 1: Phase Plane for $\mathbf{x}^{(1)}$

To visualize solution, consider first $\mathbf{x} = c_1\mathbf{x}^{(1)}$:

$$\mathbf{x}^{(1)}(t) = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{3t} \iff x_1 = c_1 e^{3t}, \ x_2 = 2c_1 e^{3t}$$

Now

$$x_1 = c_1 e^{3t}, \ x_2 = 2c_1 e^{3t} \iff e^{3t} = \frac{x_1}{c_1} = \frac{x_2}{2c_1} \iff x_2 = 2x_1$$

Thus $\mathbf{x}^{(1)}$ lies along the straight line $x_2 = 2x_1$, which is the line through origin in direction of first eigenvector $\mathbf{\xi}^{(1)}$

If solution is trajectory of particle, with position given by (x_1, x_2), then it is in Q1 when $c_1 > 0$, and in Q3 when $c_1 < 0$.

In either case, particle moves away from origin as t increases.
Example 1: Phase Plane for $\mathbf{x}^{(2)}$ (7 of 9)

Next, consider $\mathbf{x} = c_2 \mathbf{x}^{(2)}$:

$$
\mathbf{x}^{(2)}(t) = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = c_2 \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{-t} \quad \Leftrightarrow \quad x_1 = c_2 e^{-t}, \quad x_2 = -2c_2 e^{-t}
$$

Then $\mathbf{x}^{(2)}$ lies along the straight line $x_2 = -2x_1$, which is the line through origin in direction of 2nd eigenvector $\mathbf{\xi}^{(2)}$.

If solution is trajectory of particle, with position given by (x_1, x_2), then it is in Q4 when $c_2 > 0$, and in Q2 when $c_2 < 0$.

In either case, particle moves towards origin as t increases.
Example 1:
Phase Plane for General Solution

The general solution is $x = c_1 x^{(1)} + c_2 x^{(2)}$:

$$x(t) = c_1 \left(\begin{array}{c} 1 \\ 2 \end{array} \right) e^{3t} + c_2 \left(\begin{array}{c} 1 \\ -2 \end{array} \right) e^{-t}$$

As $t \to \infty$, $c_1 x^{(1)}$ is dominant and $c_2 x^{(2)}$ becomes negligible. Thus, for $c_1 \neq 0$, all solutions asymptotically approach the line $x_2 = 2x_1$ as $t \to \infty$.

Similarly, for $c_2 \neq 0$, all solutions asymptotically approach the line $x_2 = -2x_1$ as $t \to -\infty$.

The origin is a **saddle point**, and is unstable. See graph.
Example 1:
Time Plots for General Solution

The general solution is \(\mathbf{x} = c_1 \mathbf{x}^{(1)} + c_2 \mathbf{x}^{(2)} \):

\[
\mathbf{x}(t) = c_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{3t} + c_2 \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{-t} \iff \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} c_1 e^{3t} + c_2 e^{-t} \\ 2c_1 e^{3t} - 2c_2 e^{-t} \end{pmatrix}
\]

As an alternative to phase plane plots, we can graph \(x_1 \) or \(x_2 \) as a function of \(t \). A few plots of \(x_1 \) are given below.

Note that when \(c_1 = 0 \), \(x_1(t) = c_2 e^{-t} \to 0 \) as \(t \to \infty \). Otherwise, \(x_1(t) = c_1 e^{3t} + c_2 e^{-t} \) grows unbounded as \(t \to \infty \).

Graphs of \(x_2 \) are similarly obtained.
Example 2: Direction Field (1 of 9)

Consider the homogeneous equation \(x' = Ax \) below.

\[
x' = \begin{pmatrix} -3 & \sqrt{2} \\ \sqrt{2} & -2 \end{pmatrix} x
\]

A direction field for this system is given below.

Substituting \(x = \xi e^{rt} \) in for \(x \), and rewriting system as \((A-rI)\xi = 0 \), we obtain

\[
\begin{pmatrix} -3-r & \sqrt{2} \\ \sqrt{2} & -2-r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]
Example 2: Eigenvalues (2 of 9)

Our solution has the form \(x = \xi e^{rt} \), where \(r \) and \(\xi \) are found by solving

\[
\begin{pmatrix}
-3 - r & \sqrt{2} \\
\sqrt{2} & -2 - r
\end{pmatrix}
\begin{pmatrix}
\xi_1 \\
\xi_1
\end{pmatrix} =
\begin{pmatrix}
0 \\
0
\end{pmatrix}
\]

Recalling that this is an eigenvalue problem, we determine \(r \) by solving \(\det(A - rI) = 0 \):

\[
\left| \begin{array}{cc}
-3 - r & \sqrt{2} \\
\sqrt{2} & -2 - r
\end{array} \right| = (-3 - r)(-2 - r) - 2 = r^2 + 5r + 4 = (r + 1)(r + 4)
\]

Thus \(r_1 = -1 \) and \(r_2 = -4 \).
Eigenvector for $r_1 = -1$: Solve

$$\begin{align*}
(A - rI) \xi &= 0 \\
\begin{pmatrix} -3 + 1 & \sqrt{2} \\ \sqrt{2} & -2 + 1 \end{pmatrix} &\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\
&\iff \begin{pmatrix} -2 & \sqrt{2} \\ \sqrt{2} & -1 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\end{align*}$$

by row reducing the augmented matrix:

$$
\begin{pmatrix} -2 & \sqrt{2} & 0 \\ \sqrt{2} & -1 & 0 \end{pmatrix} \iff \begin{pmatrix} 1 & -\sqrt{2}/2 & 0 \\ \sqrt{2} & -1 & 0 \end{pmatrix} \iff \begin{pmatrix} 1 & -\sqrt{2}/2 & 0 \\ 0 & 0 & 0 \end{pmatrix}
$$

$$\xi^{(1)} = \begin{pmatrix} \sqrt{2}/2 \\ \xi_2 \end{pmatrix} \rightarrow \text{choose } \xi^{(1)} = \begin{pmatrix} 1 \\ \sqrt{2} \end{pmatrix}$$
Example 2: Second Eigenvector

Eigenvector for \(r_2 = -4 \): Solve

\[
(A - rI)\xi = 0 \iff \begin{pmatrix} -3 + 4 & \sqrt{2} \\ \sqrt{2} & -2 + 4 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff \begin{pmatrix} 1 & \sqrt{2} \\ \sqrt{2} & 2 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]

by row reducing the augmented matrix:

\[
\begin{pmatrix} 1 & \sqrt{2} & 0 \\ \sqrt{2} & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & \sqrt{2} & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \xi^{(2)} = \begin{pmatrix} -\sqrt{2} \xi_2 \\ \xi_2 \end{pmatrix}
\]

choose \(\xi^{(2)} = \begin{pmatrix} -\sqrt{2} \\ 1 \end{pmatrix} \)
Example 2: General Solution (5 of 9)

The corresponding solutions $x = \xi e^{rt}$ of $x' = Ax$ are

$$x^{(1)}(t) = \begin{pmatrix} 1 \\ \sqrt{2} \end{pmatrix} e^{-t}, \quad x^{(2)}(t) = \begin{pmatrix} -\sqrt{2} \\ 1 \end{pmatrix} e^{-4t}$$

The Wronskian of these two solutions is

$$W[x^{(1)}, x^{(2)}](t) = \begin{vmatrix} e^{-t} & -\sqrt{2} e^{-4t} \\ \sqrt{2} e^{-t} & e^{-4t} \end{vmatrix} = 3e^{-5t} \neq 0$$

Thus $x^{(1)}$ and $x^{(2)}$ are fundamental solutions, and the general solution of $x' = Ax$ is

$$x(t) = c_1 x^{(1)}(t) + c_2 x^{(2)}(t)$$

$$= c_1 \begin{pmatrix} 1 \\ \sqrt{2} \end{pmatrix} e^{-t} + c_2 \begin{pmatrix} -\sqrt{2} \\ 1 \end{pmatrix} e^{-4t}$$
Example 2: Phase Plane for $\mathbf{x}^{(1)}$ (6 of 9)

To visualize solution, consider first $\mathbf{x} = c_1 \mathbf{x}^{(1)}$:

$$\mathbf{x}^{(1)}(t) = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ \sqrt{2} \end{pmatrix} e^{-t} \quad \Leftrightarrow \quad x_1 = c_1 e^{-t}, \quad x_2 = \sqrt{2} c_1 e^{-t}$$

Now

$$x_1 = c_1 e^{-t}, \quad x_2 = \sqrt{2} c_1 e^{-t} \quad \Leftrightarrow \quad e^{-t} = \frac{x_1}{c_1} = \frac{x_2}{\sqrt{2} c_1} \quad \Leftrightarrow \quad x_2 = \sqrt{2} x_1$$

Thus $\mathbf{x}^{(1)}$ lies along the straight line $x_2 = 2^{1/2} x_1$, which is the line through origin in direction of first eigenvector $\xi^{(1)}$.

If solution is trajectory of particle, with position given by (x_1, x_2), then it is in Q1 when $c_1 > 0$, and in Q3 when $c_1 < 0$.

In either case, particle moves towards origin as t increases.
Example 2: Phase Plane for \(x^{(2)} \) (7 of 9)

Next, consider \(x = c_2 x^{(2)} \):

\[
x^{(2)}(t) = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = c_2 \begin{pmatrix} -\sqrt{2} \\ 1 \end{pmatrix} e^{-4t} \iff x_1 = -\sqrt{2} c_2 e^{-4t}, \ x_2 = c_2 e^{-4t}
\]

Then \(x^{(2)} \) lies along the straight line \(x_2 = -2^{\frac{1}{2}} x_1 \), which is the line through origin in direction of 2nd eigenvector \(\xi^{(2)} \)

If solution is trajectory of particle, with position given by \((x_1, x_2) \), then it is in Q4 when \(c_2 > 0 \), and in Q2 when \(c_2 < 0 \).

In either case, particle moves towards origin as \(t \) increases.
Example 2:
Phase Plane for General Solution (8 of 9)

The general solution is \(\mathbf{x} = c_1 \mathbf{x}^{(1)} + c_2 \mathbf{x}^{(2)} \):

\[
\mathbf{x}^{(1)}(t) = \begin{pmatrix} 1 \\ \sqrt{2} \end{pmatrix} e^{-t}, \quad \mathbf{x}^{(2)}(t) = \begin{pmatrix} -\sqrt{2} \\ 1 \end{pmatrix} e^{-4t}
\]

As \(t \to \infty \), \(c_1 \mathbf{x}^{(1)} \) is dominant and \(c_2 \mathbf{x}^{(2)} \) becomes negligible. Thus, for \(c_1 \neq 0 \), all solutions asymptotically approach origin along the line \(x_2 = \frac{1}{2} x_1 \) as \(t \to \infty \).

Similarly, all solutions are unbounded as \(t \to -\infty \).

The origin is a node, and is asymptotically stable.
Example 2:
Time Plots for General Solution (9 of 9)

The general solution is $\mathbf{x} = c_1 \mathbf{x}^{(1)} + c_2 \mathbf{x}^{(2)}$:

$$\mathbf{x}(t) = c_1 \begin{pmatrix} 1 \\ \sqrt{2} \end{pmatrix} e^{-t} + c_2 \begin{pmatrix} -\sqrt{2} \\ 1 \end{pmatrix} e^{-4t} \Leftrightarrow \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} c_1 e^{-t} - \sqrt{2} c_2 e^{-4t} \\ \sqrt{2} c_1 e^{-t} + c_2 e^{-4t} \end{pmatrix}$$

As an alternative to phase plane plots, we can graph x_1 or x_2 as a function of t. A few plots of x_1 are given below.

Graphs of x_2 are similarly obtained.
2 x 2 Case:
Real Eigenvalues, Saddle Points and Nodes

The previous two examples demonstrate the two main cases for a 2 x 2 real system with real and different eigenvalues:

- Both eigenvalues have opposite signs, in which case origin is a saddle point and is unstable.
- Both eigenvalues have the same sign, in which case origin is a node, and is asymptotically stable if the eigenvalues are negative and unstable if the eigenvalues are positive.
Eigenvalues, Eigenvectors and Fundamental Solutions

In general, for an $n \times n$ real linear system $x' = Ax$:

- All eigenvalues are real and different from each other.
- Some eigenvalues occur in complex conjugate pairs.
- Some eigenvalues are repeated.

If eigenvalues r_1, \ldots, r_n are real & different, then there are n corresponding linearly independent eigenvectors $\xi^{(1)}, \ldots, \xi^{(n)}$. The associated solutions of $x' = Ax$ are

$$x^{(1)}(t) = \xi^{(1)} e^{r_1 t}, \ldots, x^{(n)}(t) = \xi^{(n)} e^{r_n t}$$

Using Wronskian, it can be shown that these solutions are linearly independent, and hence form a fundamental set of solutions. Thus general solution is

$$x = c_1 \xi^{(1)} e^{r_1 t} + \ldots + c_n \xi^{(n)} e^{r_n t}$$
Hermitian Case: Eigenvalues, Eigenvectors & Fundamental Solutions

If A is an $n \times n$ Hermitian matrix (real and symmetric), then all eigenvalues r_1, \ldots, r_n are real, although some may repeat.

In any case, there are n corresponding linearly independent and orthogonal eigenvectors $\xi^{(1)}, \ldots, \xi^{(n)}$. The associated solutions of $x' = Ax$ are

$$x^{(1)}(t) = \xi^{(1)} e^{r_1 t}, \ldots, x^{(n)}(t) = \xi^{(n)} e^{r_n t}$$

and form a fundamental set of solutions.
Example 3: Hermitian Matrix (1 of 3)

Consider the homogeneous equation $x' = Ax$ below.

$$x' = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} x$$

The eigenvalues were found previously in Ch 7.3, and were:

$r_1 = 2$, $r_2 = -1$ and $r_3 = -1$.

Corresponding eigenvectors:

$$\xi^{(1)} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \xi^{(2)} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \quad \xi^{(3)} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$
Example 3: General Solution (2 of 3)

The fundamental solutions are

\[x^{(1)} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} e^{2t}, \quad x^{(2)} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} e^{-t}, \quad x^{(3)} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} e^{-t} \]

with general solution

\[x = c_1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} e^{2t} + c_2 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} e^{-t} + c_3 \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} e^{-t} \]
Example 3: General Solution Behavior (3 of 3)

The general solution is $x = c_1x^{(1)} + c_2x^{(2)} + c_3x^{(3)}$:

$$x = c_1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} e^{2t} + c_2 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} e^{-t} + c_3 \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} e^{-t}$$

As $t \to \infty$, $c_1x^{(1)}$ is dominant and $c_2x^{(2)}$, $c_3x^{(3)}$ become negligible.

Thus, for $c_1 \neq 0$, all solns x become unbounded as $t \to \infty$, while for $c_1 = 0$, all solns $x \to 0$ as $t \to \infty$.

The initial points that cause $c_1 = 0$ are those that lie in plane determined by $\xi^{(2)}$ and $\xi^{(3)}$. Thus solutions that start in this plane approach origin as $t \to \infty$.
Complex Eigenvalues and Fundamental Solns

If some of the eigenvalues \(r_1, \ldots, r_n \) occur in complex conjugate pairs, but otherwise are different, then there are still \(n \) corresponding linearly independent solutions

\[
\mathbf{x}^{(1)}(t) = \xi^{(1)} e^{r_1 t}, \ldots, \mathbf{x}^{(n)}(t) = \xi^{(n)} e^{r_n t},
\]

which form a fundamental set of solutions. Some may be complex-valued, but real-valued solutions may be derived from them. This situation will be examined in Ch 7.6.

If the coefficient matrix \(\mathbf{A} \) is complex, then complex eigenvalues need not occur in conjugate pairs, but solutions will still have the above form (if the eigenvalues are distinct) and these solutions may be complex-valued.
Repeated Eigenvalues and Fundamental Solns

If some of the eigenvalues \(r_1, \ldots, r_n \) are repeated, then there may not be \(n \) corresponding linearly independent solutions of the form

\[x^{(1)}(t) = \xi^{(1)} e^{rt}, \ldots, x^{(n)}(t) = \xi^{(n)} e^{rt} \]

In order to obtain a fundamental set of solutions, it may be necessary to seek additional solutions of another form.

This situation is analogous to that for an \(n \)th order linear equation with constant coefficients, in which case a repeated root gave rise solutions of the form

\[e^{rt}, te^{rt}, t^2 e^{rt}, \ldots \]

This case of repeated eigenvalues is examined in Section 7.8.