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!   We continue the discussion of the last section, and now 
consider the presence of a periodic external force: 



Forced Vibrations with Damping 
!   Consider the equation below for damped motion and external 

forcing funcion F0cosωt.  

!   The general solution of this equation has the form 

 where the general solution of the homogeneous equation is 

 and the particular solution of the nonhomogeneous equation is 



Homogeneous Solution 
!   The homogeneous solutions u1 and u2 depend on the roots r1 

and r2 of the characteristic equation:  

!   Since m, γ, and k are are all positive constants, it follows that 
r1 and r2 are either real and negative, or complex conjugates 
with negative real part.  In the first case, 

 while in the second case  

!   Thus in either case,  



Transient and Steady-State Solutions 
!   Thus for the following equation and its general solution, 

 we have 

!   Thus uC(t) is called the transient solution.  Note however that 

 is a steady oscillation with same frequency as forcing function.  
!   For this reason, U(t) is called the steady-state solution, or 

forced response. 



Transient Solution and Initial Conditions 
!   For the following equation and its general solution, 

 the transient solution uC(t) enables us to satisfy whatever 
initial conditions might be imposed.   

!   With increasing time, the energy put into system by initial 
displacement and velocity is dissipated through damping force.  
The motion then becomes the response U(t) of the system to 
the external force F0cosωt.  

!   Without damping, the effect of the initial conditions would 
persist for all time.  



Example 1  (1 of 2) 

!   Consider a spring-mass system satisfying the differential 
equation and initial condition 

!   Begin by finding the solution to the homogeneous equation 
!   The methods of Chapter 3.3 yield the solution 

!   A particular solution to the nonhomogeneous equation will 
have the form U(t) = A cos t + B sin t and substitution 
gives A = 12/17 and B = 48/17. So 



Example 1  (2 of 2) 

!   The general solution for the nonhomogeneous equation is 

!   Applying the initial conditions yields 

!   Therefore, the solution to the IVP is 

!   The graph breaks the solution 
 into its steady state (U(t)) 
 and transient (        )  
 components 



Rewriting Forced Response 
!   Using trigonometric identities, it can be shown that 

 can be rewritten as 

!   It can also be shown that 

 where   



Amplitude Analysis of Forced Response 
!   The amplitude R of the steady state solution  

 depends on the driving frequency ω.  For low-frequency 
excitation we have 

 where we recall (ω0)2 = k /m.  Note that F0 /k is the static 
displacement of the spring produced by force F0.    

!   For high frequency excitation, 



Maximum Amplitude of Forced Response 
!   Thus  

!   At an intermediate value of ω, the amplitude R may have a 
maximum value. To find this frequency ω, differentiate R and 
set the result equal to zero.  Solving for ωmax, we obtain 

 where (ω0)2 = k /m.  Note ωmax < ω0, and ωmax  is close to ω0 
for small γ.  The maximum value of R is 



Maximum Amplitude for Imaginary ωmax  
!   We have 

 and   

 where the last expression is an approximation for small γ.  If  
 γ 2 /(mk) > 2, then ωmax is imaginary.  In this case, Rmax= F0 /k, 
which occurs at ω = 0, and R is a monotone decreasing 
function of ω.  Recall from Section 3.8 that critical damping 
occurs when γ 2 /(mk) = 4.  



Resonance 
!   From the expression   

 we see that Rmax≅ F0 /(γ ω0) for small γ.    
!   Thus for lightly damped systems, the amplitude R of the 

forced response is large for ω near ω0, since ωmax ≅ ω0 for 
small γ.   

!   This is true even for relatively small external forces, and the 
smaller the γ  the greater the effect. 

!   This phenomena is known as resonance.  Resonance can be 
either good or bad, depending on circumstances; for example, 
when building bridges or designing seismographs. 



Graphical Analysis of Quantities  
!   To get a better understanding of the quantities we have been 

examining, we graph the ratios R/(F0/k) vs. ω/ω0 for several 
values of Γ  = γ 2 /(mk), as shown below. 

!   Note that the peaks tend to get higher as damping decreases.  
!   As damping decreases to zero, the values of R/(F0/k) become 

asymptotic to ω = ω0.  Also, if γ 2 /(mk) > 2, then Rmax= F0 /k,  
 which occurs at ω = 0. 



Analysis of Phase Angle 
!   Recall that the phase angle δ given in the forced response  

 is characterized by the equations  

!   If ω  ≅ 0, then cosδ  ≅ 1, sinδ  ≅ 0, and hence δ  ≅ 0. Thus the 
response is nearly in phase with the excitation.  

!   If ω = ω0, then cosδ = 0, sinδ = 1, and hence δ  ≅ π /2.  Thus 
response lags behind excitation by nearly π /2 radians. 

!   If ω large, then cosδ  ≅ -1, sinδ = 0, and hence δ  ≅ π .  Thus 
response lags behind excitation by nearly π  radians, and  
hence they are nearly out of phase with each other.   



Example 2:   
Forced Vibrations with Damping     (1 of 4) 

!   Consider the initial value problem  

!   Then ω0 = 1, F0 = 3, and Γ = γ 2 /(mk) = 1/64 = 0.015625.  
!   The unforced motion of this system was discussed in Ch 3.7, 

with the graph of the solution given below, along with the 
graph of the ratios R/(F0/k) vs. ω/ω0 for different values of Γ.  



Example 2:   
Forced Vibrations with Damping     (2 of 4) 

!   Recall that ω0 = 1, F0 = 3, and Γ = γ 2 /(mk) = 1/64 = 0.015625.  
!   The solution for the low frequency case ω = 0.3 is graphed 

below, along with the forcing function.  
!   After the transient response is substantially damped out, the 

steady-state response is essentially in phase with excitation, 
and response amplitude is larger than static displacement. 

!   Specifically, R ≅ 3.2939 > F0/k = 3, and δ ≅ 0.041185. 



Example 2:   
Forced Vibrations with Damping     (3 of 4) 

!   Recall that ω0 = 1, F0 = 3, and Γ = γ 2 /(mk) = 1/64 = 0.015625.  
!   The solution for the resonant case ω = 1 is graphed below, 

along with the forcing function.  
!   The steady-state response amplitude is eight times the static 

displacement, and the response lags excitation by π /2 radians, 
as predicted.  Specifically, R = 24 > F0/k = 3, and δ  = π /2. 



Example 2:   
Forced Vibrations with Damping     (4 of 4) 

!   Recall that ω0 = 1, F0 = 3, and Γ = γ 2 /(mk) = 1/64 = 0.015625.  
!   The solution for the relatively high frequency case ω = 2 is 

graphed below, along with the forcing function.  
!   The steady-state response is out of phase with excitation, and 

response amplitude is about one third the static displacement. 
!   Specifically, R ≅ 0.99655 ≅ F0/k = 3, and δ ≅ 3.0585 ≅ π. 



Undamped Equation:  
General Solution for the Case ω0  ≠ ω 

!   Suppose there is no damping term.  Then our equation is 

!   Assuming ω0  ≠ ω, then the method of undetermined 
coefficients can be use to show that the general solution is 



Undamped Equation:  
Mass Initially at Rest  (1 of 3) 

!   If the mass is initially at rest, then the corresponding initial 
value problem is 

!   Recall that the general solution to the differential equation is 

!   Using the initial conditions to solve for c1 and c2, we obtain 

!   Hence  



Undamped Equation:  
Solution to Initial Value Problem    (2 of 3) 

!   Thus our solution is 

!   To simplify the solution even further, let A = (ω0 + ω)/2 and 
B = (ω0 - ω)/2.  Then A + B = ω0t  and A - B = ωt.  Using the 
trigonometric identity 

 it follows that 

 and hence 



Undamped Equation: Beats    (3 of 3) 

!   Using the results of the previous slide, it follows that 

!   When |ω0 - ω| ≅ 0, ω0 + ω  is much larger than ω0 - ω, and 
 sin[(ω0 + ω)t/2] oscillates more rapidly than sin[(ω0 - ω)t/2].  

!   Thus motion is a rapid oscillation with frequency (ω0 + ω)/2, 
but with slowly varying sinusoidal amplitude given by 

!   This phenomena is called a beat.   
!   Beats occur with two tuning forks of  

 nearly equal frequency. 



Example 3:  Undamped Equation, 
Mass Initially at Rest                          (1 of 2) 

!   Consider the initial value problem  

!   Then ω0 = 1, ω = 0.8, and F0 = 0.5, and hence the solution is 

!   The displacement of the spring–mass system oscillates with a  
 frequency of 0.9, slightly less than natural frequency ω0 = 1. 

!   The amplitude variation has a slow  
frequency of 0.1 and period of 20π.   

!   A half-period of 10π  corresponds to  
a single cycle of increasing and then  
decreasing amplitude. 



Example 3:  Increased Frequency          (2 of 2) 

!   Recall our initial value problem 

!   If driving frequency ω is increased to ω = 0.9, then the slow 
frequency is halved to 0.05 with half-period doubled to 20π.   

!   The multiplier 2.77778 is increased to 5.2632, and the fast 
frequency only marginally increased, to 0.095. 



Undamped Equation:  
General Solution for the Case ω0  = ω    (1 of 2) 

!   Recall our equation for the undamped case: 

!   If forcing frequency equals natural frequency of system, i.e., 
ω = ω0 , then nonhomogeneous term F0cosωt  is a solution of 
homogeneous equation.  It can then be shown that 

!   Thus solution u becomes unbounded as t → ∞.   
!   Note:  Model invalid when u gets 

large, since we assume small  
oscillations u. 



Undamped Equation: Resonance    (2 of 2) 

!   If forcing frequency equals natural frequency of system, i.e., 
ω = ω0 , then our solution is 

!   Motion u remains bounded if damping present.  However, 
response u to input  F0cosωt  may be large if damping is 
small and |ω0 - ω| ≅ 0, in which case we have resonance.  


