807 HW4

November 17, 2008

1. (Book example at the end of nonlinear parabolic equations) Assume that $U=U(x-v t), v$ constant, is a solution of the equation

$$
\begin{equation*}
\frac{\partial U}{\partial t}=\frac{\partial^{2} U^{2}}{\partial x^{2}}, \quad 0<x<1 \tag{1}
\end{equation*}
$$

Show that U satisfies

$$
\frac{A}{v} \log \left(U-\frac{A}{v}\right)+U=B-\frac{1}{2} v(x-v t)
$$

where A and B are constants. Choosing $A=1$ and $v=2$, then $B=U(0,0)=$ 1.5 leads to the particular solution

$$
(2 U-3)+\log \left(U-\frac{1}{2}\right)=2(2 t-x)
$$

Solve this nonlinear equation for $x=0: 0.1: 1$ at $t=0.5$ and $t=1.0$.
2. Solve 1 by Newton's method with the boundary condition provided at 0 and 1 in problem 1 for $h=0.1, r=k / h^{2}=\frac{1}{2}$, and provide the solution at $t=0.5$ and $t=1.0$.
3. Solve 1 by Richtmyer's method with the boundary condition provided at 0 and 1 in problem 1 for $h=0.1, r=k / h^{2}=\frac{1}{2}$, and provide the solution at $t=0.5$ and $t=1.0$.
4. Solve 1 by three step method (Lee) with the boundary condition provided at 0 and 1 in problem 1 for $h=0.1, r=k / h^{2}=\frac{1}{2}$, and provide the solution at $t=0.5$ and $t=1.0$.
5. Suppose that

$$
\frac{d^{2} u}{d x^{2}}-\lambda^{2} u=f(x) \quad 0 \leq x \leq L
$$

subject to the boundary condition $u(0)=u_{L}$ and $u(0)=u_{R}$ is solved by central discretization:

$$
\frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}}-\lambda^{2} u_{i}=f\left(x_{i}\right)
$$

Determine the upper bound of the error vector $e_{i}=U_{i}-u_{i}$.
6. Solve

$$
\frac{d^{2} u}{d x^{2}}+2 u=-x \quad 0 \leq x \leq 1
$$

with boundary condition $u(0)=0$ and $u(1)+u^{\prime}(1)=0$ by central discretization. Verify that the exact solution is

$$
u=\frac{\sin (\sqrt{2} x)}{\sin (\sqrt{2})+\sqrt{2} \cos (\sqrt{2})}-\frac{x}{2}
$$

Choose the mesh size you like to demonstrate second order accuracy.
7. Use central discretization for

$$
\frac{\partial^{2} u}{\partial x^{2}}+3 \frac{\partial^{2} u}{\partial y^{2}}=-16 \quad \text { for } \quad(x, y) \in(0,1) \times(0,1)
$$

with the boundary condition $u=0$ on $x=1, \frac{\partial u}{\partial y}=-u$ on $y=1$, abd $\frac{\partial u}{\partial x}=0$ on $x=0$ and $\frac{\partial u}{\partial y}=0$ on $y=0$. Write down the scheme in matrix form $A u=f$. Write down A and f.

