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1 Introduction

The emergence of the web2.0 phenomenon has set in place a planetary-scale infrastructure for rapid
proliferation of information and ideas. Social media platforms such as blogs, twitter accounts and
online discussion sites are large-scale forums where everyindividual can voice a potentially influ-
ential public opinion. According to recent surveys, a massive number of internet users are turning
to such forums to collect recommendations and reviews for products and services – shaping their
choices and stances by the commentary of the online community as a whole.

This unprecedented scale of unstructured user-generated web content presents new challenges to
both consumers and companies alike. Which blogs or twitter accounts should a consumer follow
in order to get a gist of the community opinion as a whole? How can a company identify bloggers
whose commentary can change brand perceptions across this universe, so that marketing interven-
tions can be effectively strategized?

Microblogs are particularly interesting. The most successful microblogging site, Twitter, has shown
exponential growth recently in terms of number of users and the number of tweets. It is rapidly
becoming the first point of release of information surpassing traditional media. For example, the
news of the 2009 landing of US Airways 1549 in the Hudson was first broken on twitter by a
passenger. It is also representatitive of social media platforms that serve as records of large-scale,
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instanteneous human commentary on world events. For this reason, Twitter will be archived by the
US Library of Congress.

In this project, our testbed will be datasets drawn from Twitter and we will focus on two classes of
mathematical modeling problems described below.

1. How can we essentially “compress” large number of tweets into a smaller collection of
topics? By summarizing the entire collection of tweets pertaining to a domain, topics are
easier to digest by a human analyst.

2. How can we characterize the flow of information, and in particular the spread of influence,
in the community of microbloggers?

An overview of Machine learning techniques for social mediaanalytics appears in [17]. See refer-
ences therein for representative papers from IBM Research.

2 Data Generation

2.1 Twitter Domains

We have generated a collection of twitter datasets corresponding to differentdomainsof interest.
For example, some of these domains include different IBM product/business lines1. Each domain
is specified by a collection of keywords. Using Twitter’s search API 2, all tweets containing these
domain-specific keywords over a time period are collected. Each tweet is associated with a time-
stamp and an account ID that uniquely identifies the author.

2.2 Text Representation

Each tweet may be viewed as a mini-document. We use the classic bag-of-words representation to
turn tweets into numerical feature vectors. This involves two main steps: (a) Vocabulary generation
and (b) Indexing. In the vocabulary generation step, tweetsare tokenized by white space, common
stop words are removed, words are converted into stemmed terms, and finally terms that occur in
fewer than a certain number of documents are pruned away as a denoising heuristic. The resulting
set of words form a vocabulary ofd words. In the indexing step, each tweet is represented using
TFIDF [16] feature vectors,x = (x1 . . . xd) ∈ Rd with entriesxj = tfj ∗ idfj wheretfj is
the term-frequency of thejth term of the vocabulary in the tweet andidfj is the associatedinverse
document frequency(IDF). IDF is defined asidf(j) = ln( n

dfj
) wheren is the total number of tweets

in the collection anddfj is the number of documents containing termj.

The TFIDF representation is an effective heuristic developed in the information retrieval community.
It emphasizes words that occur several times in a small collection of documents over highly common
words that have less discriminatory power. The entire tweetcollection may be represented as the
document-term matrixX ∈ Rn×d whose rows representn tweets in the collection represented over
d words. It is further common to normalize the rows to have unitl1 or l2 norm so that each document
is treated equally.

3 Detecting Topics with Sparse Low-rank Matrix Approximations

Topic models commonly operate under the assumption that it is possible to summarize a large col-
lection of text documents in terms of a much smaller set of discussion themes. These discussion
themes are identified as “topics” in the document collection. Topic modeling is closely related to
clustering and as such may be viewed as “soft-clustering”. Two families of topic models have been
explored in the literature. The first is based on Low-Rank Matrix Factorizations [16, 12, 21] while
the second is based on Probabilistic Topic models [18, 10, 2]. These families are actually closely
related as we explain below.

1e.g., Lotuswww.ibm.com/software/lotus
2http://apiwiki.twitter.com/Search-API-Documentation
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Let k be the number of topics typically specified as an input parameter. Each topic is associated
with a (column) vectorh ∈ Rd which in probabilistic topic models is a distribution over words or
may be viewed as a member of a dictionary over which documentscan be effectively coded. Let
H ∈ Rk×d = (h1 . . . hk)T represent the topic-word matrix. Then, we want each document (tweet)
to be approximately expressible by linear mixing the collection of topics. Letx be a row-vector
representing a document. Then, we want,

x ≈

k
∑

i=1

wih
′
i = w′H

wherew are the mixture coefficients. In other words, we want to express the document-term matrix
X in terms of alow-rank approximation,

X ≈ WH

whereW is then × k matrix of document-topic associations andH is k × d matrix of topic-term
associations. A human analyst can interpret/explore the topic by examing the top words as ranked
by hr or the top documents as ranked bywr. These are documents and words that associate most
strongly with the topic.

We now quickly summarize some connections.

1. Let us measure the quality of approximation using the Frobenius norm. In other words, let
us minimize,

J(W,H) = ‖X − WH‖2

Firstly, this problem does not have a unique solution inW and H since WH =
WQQ−1H for any invertiblek × k matrixQ. The bestrank-kapproximation to a matrix
is given by truncating the SVD. LetX = USVT be the SVD ofX. Thus one solution to

the problem above isW = UkS
1

2

k andH = S
1

2

k VT
k where the subscriptk denotes restric-

tion to the topk singular vectors and singular values. This approach is classically called
Latent Semantic Analysisin the Information Retrieval literature where the singularvectors
are used to find lowerk-dimensional embeddings of documents and terms, and similarity
computations for search applications are conducted in the “latent space” [16]. Also see [20]
for connections tok-means clustering.

2. Let us now assume thatX is normalized so that the sum of its entries is1. ThenX
may be viewed as specifying a joint probability distribution over two random variables
D ∈ {1, . . . , n} andT ∈ {1, . . . , d}. The pLSA model of [10] was introduced as a proba-
bilistic enhancement of LSI to better model discrete term-frequency counts. It assumes the
existence ofk hidden variables,(z1, . . . , zk), with respect to which this joint distribution
factorizes. In other words,

P (D = i, T = j) =

k
∑

t=1

P (z = t)P (D = i|z = t)P (T = j|z = t)

Given the observations,Xij , we can now learn the parameters of the probabilistic model
by maximizing the log-likelihood of the data,

J({P (z = t), P (D = ·|z = t)P (T = ·|z = t)}k
t=1

) =
∑

ij

Xij log(P (D = i, T = j))

It turns out [6] that this is equivalent to minimizing theGeneralized KL-divergenceunder
non-negativityconstraintsW ≥ 0,H ≥ 0,

J(W,H) =
∑

ij

Xij log

(

Xij

(WH)ij

)

+ (WH)ij − Xij

Non-negative Matrix Factorizations(NMF) refer to a class of techniques to build low-rank
matrix approximations to minimize such divergence criteria under the constraint that the
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low-rank factors be non-negative. It was popularized by thework of Lee and Seung in
1999 [12] where the motivation was to interpret dictionary elements (rows ofH) as “parts”
of an object that needed to be recovered from an object collection. For better interpretability
of low-rank factorization of non-negative data, it is useful to disallow basis elements with
negative entries and allow only additive combinations of them (i.e.,W ≥ 0) to reconstitute
objects. [12] and other followup papers give very simple update rules for learning an NMF.
Note however, in contrast to the SVD, the NMF problem is NP-hard [19].

3. LDA [2] is a further enhancement of pLSI where priors are imposed over model parame-
ters to avoid overfitting and to lend a better probabilistic interpretation to the model. By
“better”, we mean a generative model that says how an entire document is generated as
opposed to document and wordindicesin pLSI. LSA is widely considered to be a state of
the art methodology for topic modeling. A matlab toolbox forLDA is available3.
In an NMF framework, priors may be enforced via regularization terms. An example of a
regularized objective function is the following,

J(W,H) = ‖X − WH‖2 + γ‖W‖1

which enforces the “coding” to be sparse via thel1 penalty. Thel1 penalty is a convex
proxy to thel0 norm that directly measures the number of non-zeros inW. Sparsity is
useful because it can lead to improved clustering effect andalso allow the optimization
algorithm to scale to larger number of documents and/or topics by maintaining each low-
rank factor as a sparse (as opposed to dense) matrix.

4. NMF is closely related to several clustering algorithms including spectral clustering and
k-means [5, 13].

3.1 Optimization Algorithms

There are a large number of optimization algorithms proposed for solving NMF problems. These
include Lee and Seung’s classic multiplicative update algorithms [12], Alternating Least Squares [1],
Alternating Non-negative Least Squares and Projected Gradient Methods [14]. More algorithms are
exhaustively covered in the book [4]. A recent elegant approach calledRank-one Residue Iterations
was independently proposed by three authors [9, 7, 4]. It is based on the observation that a class of
rank-one subproblems have the following closed form updaterules under non-negativity constraints,

hr = arg min
h≥0

‖R − wrh
T ‖2 =

1

w′
rwr

max(R′wr, 0)

whereR = (X −
∑

j 6=r wjh
T
j ) is the current residual matrix (note: not necessarily non-negative).

Since the productWH is not unique, it is common to normalizeWH = (WDH)(D−1

H H) where
DH is a diagonal matrix of row sums ofH. In other words,hr is reset to 1

1T hr
hr while wr is reset

to (1T hr)wr without changing the objective value.

Very similar update rules can be derived forwr:

wr = arg min
w≥0

‖R − whT
r ‖

2 =
1

h′
rhr

max(Rhr, 0)

The algorithm cycles over the variablesW = (w1 . . . wk) andH = (h1 . . . hk)T and with slight
modifications is guaranteed to converge to a stationary point of the objective function.

Let us consider the following objective function that enforces sparsity inW:

J(W,H) = ‖X − WH‖2 + γ‖W‖1

Because of the scale invariance, let us add the following constraints:

3http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm
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H1 ≤ 1 or ‖hr‖1 ≤ 1 r = 1, . . . , k

Without such constraints, the algorithm can minimize thel1 norm by scaling downǫW and scaling
up 1

ǫ
H takingǫ → 0.

Whenl1 regularization is added, the update rules become,

wr = arg min
h≥0

‖R − wrh
T ‖2 + λ‖wr‖1 =

1

h′
rhr

max(Rhr − λ, 0)

whereλ shows up naturally as a thresholding operator.

Thehr update remains the same,

hr = arg min
h≥0

‖R − wrh
T ‖2 =

1

w′
rwr

max(R′wr, 0)

except that if‖hr‖1 > 1, we can (safetly) resethr = 1

‖hr‖1

hr and satisfy the constraints. Because
hr is in a descent direction and the objective function is quadratic, this resetting does not increase
the objective value.

Note that enforcing sparsity inW also affects the sparsity inH.

Some preliminary exploration of sparsity in the context of document clustering appears in [11].

3.2 Measuring Effect of Sparse Coding

We are interested in understanding whether sparsity leads to better topic models while significantly
reducing storage requirements. One way to measure quality of a topic model is the reconstruction
error on a held out test set,

min
W≥0

‖Xtest − WH‖2

This may be viewed as anintrinsic measure that can be computed by running rounds ofW op-
timization keepingH fixed. It is important to note however that evaluation of topic models is an
area of ongoing research. A recent paper [3] proposed methods to incorporate human judgement
in evaluating topic models which may be considered asextrinsicevaluation measures. The same
paper notes that intrinsic measures often do not correlate with extrinsic evaluation. Another method
for extrinsic evaluation is to measure clustering quality [21] or evaluate classifiers using topic-based
data representations [2] on labeled datasets where each document has been manually associated with
a category (the assumption is that labeled categories correspond to topics).

4 Temporal Causal Modeling for Characterizing Influence

The objective of this part of the project would be to understand how microbloggers influence each
other. As an example of the mechanics of spread of influence, let us consider the following sequence
of events. A consumer is looking to buy a laptop. She initiates a web search for the laptop model and
browses several discussion and blog sites where that model has been reviewed. The reviews bring to
her attention that among other nice features, the laptop also has excellent speaker quality. Next she
buys the laptop and in a few days herself blogs about it. Arguably, conditional on being made aware
of speaker quality in the reviews she had read, she is more likely to herself comment on that aspect
without necessarily attempting to find those sites again in order to link to them in her blog. In other
words, the actual post content is the only trace that the opinion was implicitly absorbed. Moreover,
the temporal order of events in this interaction is indicative of thedirection of causal influence.

It is possible to formulate these intuitions rigorously in terms of the notion ofGranger Causality[8].
Introduced by the Nobel prize winning economist, Clive Granger, this notion has proven useful as
an operational notion of causality in time series analysis.It is based on the intuition that a cause
should necessarily precede its effect, and in particular ifa time series variableX causally affects
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anotherY , then the past values ofX should be helpful in predicting the future values ofY , beyond
what can be predicted based on the past values ofY alone.

In our context, this may be phrased in the following terms:
Granger Causality: A collection of bloggers is said to influence BloggerBi if their collective past
content (blog posts) is predictive of the future content of BloggerBi, more so than the past content
of BloggerBi alone.

Let B1 . . . BG denote a community ofG bloggers. To develop the above intuition further, we need
to represent “content” and define “predictive”. With each blogger, we associatecontent variables,
which consist of frequencies of words relevant to a topic across time. Specifically, given a dictionary
of K words and the time-stamp of each blog post, we recordw

k,t
i , the frequency of thekth word

for bloggerBi at timet 4. Then, thecontentof bloggerBi at timet can be represented asBt
i =

[w1,t
i , . . . , w

K,t
i ]. The input to our model is a collection of multiple time series, one for each blogger

Bi: {Bt
i}

T
t=1

, whereT is the timespan of our analysis. The output of our model is a causal graph
that encodes causal relationships between bloggers. This is pictorially shown below.
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The causal graph is constructed by processing each blogger one by one. At stepj, we consider
bloggerBj and pose the problem of predicting her content variables at time t, Bt

i, in terms of the
past content of the population, over a time window which is a parameter of our model. This is
a multivariate regression withK-dimensional response vectorBt

j in terms of groups of variables

{Bt−l
1

}d
l=1

, {Bt−l
2

}d
l=1

, . . . , {Bt−l
G }d

l=1
, as illustrated in Figure 1.

In this part of the project, we will experiment with a new algorithm (a multivariate version of Group
Orthogonal Matching Pursuit with a novel application to causal modeling) that selects certain vari-
able groups (bloggers) as relevant in the regression, basedon their ability to explain the response
vector, namely the future content of bloggerBj . The selected groups then identify the causal links
incident onBj in the causal graph. Moreover, regression coefficients on each edge can be used to
identify the most influential and the most influenced words.

Once the causal graph is constructed, one can define a family of influence measures on it that we
call GrangerRank. The outdegrees of nodes in the causal graph, or the PageRankare examples of
influence measures.

More technical details are available in the report [15].

4.1 Measuring Value of Causal Graphs

One can derive other measures of influence in twitter. For example, the number of followers is
a natural measure. A proxy for a “ground truth” measure of influence of a microblogger is the
probability of getting virally distributed (i.e., retweeted) in the near future. One way to benchmark
the value of causal graphs in capturing influence more accurately than say the number of followers
that a twitter account has, is to see if the causal influence ranking is more predictive of future

4this can also be computed asX
′
U whereUit = 1 if documenti has timestampt and0 otherwise
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Figure 1: Finding edges in the causal graph incident on Blogger 1. Shown is the response vector,
and variable groups for multivariate regression.

retweeting. This can be done by measuring the rank correlation between future re-tweet frequency
and the ranking returned by the causal model (i.e., via out-degrees or pagerank). Another natural
baseline to compare against the historical retweet rate itself.

5 Combining Models: Understanding Topical Influence

Each microblogger can be associated with multiple time series representing usage of topics instead
of words cross time. The final part of the project will attemptto combine the topic models with the
causal models to arrive at a robust topical notion of influence.

6 Project Plan

Team A: Learning Topics with Sparse Low-rank Non-negative Matrix Factorizations

1. Explore the effect of sparsity on the tradeoff between thequality of topic models and scal-
ability obtained due to reduction in memory requirements.

2. Qualitatively explore the performance of sparse NMF topic models on twitter datasets.

3. Compare competing topic modeling methodologies such as LDA against sparse low-rank
non-negative factorizations as in [3].

4. Combine the topic model with causal models for influence working with Team B.

Team B: Inferring Key Influencers with Granger Causality

1. Implement GrangerRanks (Matlab)

2. Explore GrangerRanks on twitter datasets.

3. Benchmark them against measures like future retweet rates.

4. Build models at the level of topics working with Team A.

Note: This plan gives a sketch of some of the technical ideas we are interested in exploring. The
project will allow for significant flexibility in exploring related technical directions based on evolv-
ing interests of team members and mentors.
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