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1 Introduction

The emergence of the web2.0 phenomenon has set in placesdgriaacale infrastructure for rapid
proliferation of information and ideas. Social media @atiis such as blogs, twitter accounts and
online discussion sites are large-scale forums where éndiyidual can voice a potentially influ-
ential public opinion. According to recent surveys, a massiumber of internet users are turning
to such forums to collect recommendations and reviews fodycts and services — shaping their
choices and stances by the commentary of the online comyramia whole.

This unprecedented scale of unstructured user-generatbdcontent presents new challenges to
both consumers and companies alike. Which blogs or twitteowatts should a consumer follow
in order to get a gist of the community opinion as a whole? Haw & company identify bloggers
whose commentary can change brand perceptions acrossivesae, so that marketing interven-
tions can be effectively strategized?

Microblogs are particularly interesting. The most suctidsaicroblogging site, Twitter, has shown
exponential growth recently in terms of number of users d&ednumber of tweets. It is rapidly
becoming the first point of release of information surpagsiaditional media. For example, the
news of the 2009 landing of US Airways 1549 in the Hudson was firoken on twitter by a
passenger. It is also representatitive of social medidgptas that serve as records of large-scale,
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instanteneous human commentary on world events. For thiore Twitter will be archived by the
US Library of Congress.

In this project, our testbed will be datasets drawn from ®wiand we will focus on two classes of
mathematical modeling problems described below.

1. How can we essentially “compress” large number of twests & smaller collection of
topics? By summarizing the entire collection of tweets garhg to a domain, topics are
easier to digest by a human analyst.

2. How can we characterize the flow of information, and inipatar the spread of influence,
in the community of microbloggers?

An overview of Machine learning techniques for social meatialytics appears in [17]. See refer-
ences therein for representative papers from IBM Research.

2 Data Generation

2.1 Twitter Domains

We have generated a collection of twitter datasets correfipg to differentdomainsof interest.
For example, some of these domains include different IBMipot/business linfs Each domain
is specified by a collection of keywords. Using Twitter's s#API[, all tweets containing these
domain-specific keywords over a time period are collecteachBweet is associated with a time-
stamp and an account ID that uniquely identifies the author.

2.2 Text Representation

Each tweet may be viewed as a mini-document. We use the claagiof-words representation to
turn tweets into numerical feature vectors. This involwes main steps: (a) Vocabulary generation
and (b) Indexing. In the vocabulary generation step, twaetdokenized by white space, common
stop words are removed, words are converted into stemmaet tend finally terms that occur in
fewer than a certain number of documents are pruned away esasthg heuristic. The resulting
set of words form a vocabulary af words. In the indexing step, each tweet is represented using
TFIDF [16] feature vectorsg = (z1...24) € R? with entriesz; = tf; * idf; wheretf; is

the term-frequency of thg term of the vocabulary in the tweet andf; is the associatettverse
document frequendyDF). IDF is defined asdf (j) = ln(#j) wheren is the total number of tweets

in the collection andif; is the number of documents containing tefm

The TFIDF representation is an effective heuristic devetbip the information retrieval community.
It emphasizes words that occur several times in a smallat@leof documents over highly common
words that have less discriminatory power. The entire twe#éction may be represented as the
document-term matriX € R"*¢ whose rows representtweets in the collection represented over
d words. ltis further common to normalize the rows to have Ynitr i, norm so that each document
is treated equally.

3 Detecting Topics with Sparse Low-rank Matrix Approximations

Topic models commonly operate under the assumption thajpib$sible to summarize a large col-
lection of text documents in terms of a much smaller set ofudision themes. These discussion
themes are identified as “topics” in the document collectidopic modeling is closely related to
clustering and as such may be viewed as “soft-clustering/o fBmilies of topic models have been
explored in the literature. The first is based on Low-Rankriatactorizations|[16, 12, 21] while
the second is based on Probabilistic Topic models|[18, /10T Bgse families are actually closely
related as we explain below.
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Let £ be the number of topics typically specified as an input patamé=ach topic is associated
with a (column) vecto, € R? which in probabilistic topic models is a distribution oveonds or
may be viewed as a member of a dictionary over which docunmntse effectively coded. Let
H c R¥*4 = (h; ... h;)T represent the topic-word matrix. Then, we want each doctiiweet)
to be approximately expressible by linear mixing the cditet of topics. Letx be a row-vector
representing a document. Then, we want,

k
T~ g wih, = w'H
i=1

wherew are the mixture coefficients. In other words, we want to expthe document-term matrix
X in terms of dow-rank approximation

X ~WH

whereW is then x k matrix of document-topic associations aHdis k£ x d matrix of topic-term
associations. A human analyst can interpret/explore tpie toy examing the top words as ranked
by h,. or the top documents as ranked #y. These are documents and words that associate most
strongly with the topic.

We now quickly summarize some connections.

1. Let us measure the quality of approximation using the &nals norm. In other words, let
us minimize,

J(W,H) = |X - WH]*

Firstly, this problem does not have a unique solutionWi and H since WH =
WQQ'H for any invertiblek x k& matrix Q. The bestank-kapproximation to a matrix
is given by truncating the SVD. L& = USVT be the SVD ofX. Thus one solution to

1 1
the problem above i = U;S? andH = S? V{ where the subscrigt denotes restric-
tion to the topk singular vectors and singular values. This approach isiclalty called
Latent Semantic Analysis the Information Retrieval literature where the singuactors
are used to find lowek-dimensional embeddings of documents and terms, and sityila
computations for search applications are conducted inl#terit space’| [16]. Also see [20]
for connections té&-means clustering.

2. Let us now assume th& is normalized so that the sum of its entrieslis Then X
may be viewed as specifying a joint probability distributiover two random variables
De{l,...,n}and7 € {1,...,d}. The pLSA model of/[10] was introduced as a proba-
bilistic enhancement of LSI to better model discrete teremfiency counts. It assumes the
existence of hidden variables(zy, ..., z;), with respect to which this joint distribution
factorizes. In other words,

P(D=i,T=j)=Y Plz=tP(D=ilz=t)P(T =jlz=t)

Given the observation;;, we can now learn the parameters of the probabilistic model
by maximizing the log-likelihood of the data,

J({P(z=1),P(D="]z=t)P(T = |z = t)};_,) Znglog =i,7 =7j))

It turns out [6] that this is equivalent to minimizing tki&eneralized KL-divergenaender
non-negativityconstraintsW > 0, H > 0,

ZX” log( WH) ) + (WH); — Xy

Non-negative Matrix Factorlzatlor(:NMF) refer to a class of techniques to build low-rank
matrix approximations to minimize such divergence criamder the constraint that the



low-rank factors be non-negative. It was popularized bywloek of Lee and Seung in
1999 [12] where the motivation was to interpret dictiondgngents (rows oH) as “parts”
of an object that needed to be recovered from an object tilled-or better interpretability
of low-rank factorization of non-negative data, it is usefudisallow basis elements with
negative entries and allow only additive combinations eftHi.e.,W > 0) to reconstitute
objects. [[12] and other followup papers give very simpleatpdules for learning an NMF.
Note however, in contrast to the SVD, the NMF problem is NR3H{a9].

3. LDA [2] is a further enhancement of pLSI where priors ar@ased over model parame-
ters to avoid overfitting and to lend a better probabilistiteipretation to the model. By
“better”, we mean a generative model that says how an enticerdent is generated as
opposed to document and wardlicesin pLSI. LSA is widely considered to be a state of
the art methodology for topic modeling. A matlab toolbox @A is availablél.

In an NMF framework, priors may be enforced via regulariatierms. An example of a
regularized objective function is the following,

J(W,H) = [|X — WHJ|* ++|[W||x

which enforces the “coding” to be sparse via fhepenalty. Thel; penalty is a convex
proxy to thel, norm that directly measures the number of non-zero®¥vin Sparsity is

useful because it can lead to improved clustering effectasd allow the optimization
algorithm to scale to larger number of documents and/oc®py maintaining each low-
rank factor as a sparse (as opposed to dense) matrix.

4. NMF is closely related to several clustering algorithmaluding spectral clustering and
k-means!|[5l, 13].

3.1 Optimization Algorithms

There are a large number of optimization algorithms progdee solving NMF problems. These
include Lee and Seung’s classic multiplicative updaterdgms [12], Alternating Least Squares [1],
Alternating Non-negative Least Squares and Projectedi@raethods|[14]. More algorithms are
exhaustively covered in the book [4]. A recent elegant appinccalledRank-one Residue Iterations
was independently proposed by three authars|[9, 7, 4]. lased on the observation that a class of
rank-one subproblems have the following closed form upddés under non-negativity constraints,

max (R w,,0)

h, = argmin |R — w,h7||? = -
h>0 rwr

whereR = (X — Z#T W th) is the current residual matrix (note: not necessarily negative).

Since the producWH is not unique, it is common to normali?2& H = (W Dy ) (D3 H) where
Dy is a diagonal matrix of row sums &1. In other wordsj,. is reset toﬁhr while w,. is reset
to (17h,.)w, without changing the objective value.

Very similar update rules can be derived foy:

1
712 = —— max(Rh,.,0)

w, = argmin ||R — wh,,

w>0 h;hr

The algorithm cycles over the variabl88 = (w; ...w;) andH = (h; ... h;)T and with slight
modifications is guaranteed to converge to a stationanyt pbithe objective function.

Let us consider the following objective function that erfes sparsity ifW:

J(W, H) = [|X — WH|* ++[[W||x

Because of the scale invariance, let us add the followingtraimts:
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H1<1 or [[h)1i<1r=1,...,k

Without such constraints, the algorithm can minimizeltheorm by scaling dowsW and scaling
up 1H takinge — 0.

Whenl; regularization is added, the update rules become,

1
wy = argmin [R — w, b7 |2 + A |y = -—max(Rh, — A,0)
h>0 rlir

whereA shows up naturally as a thresholding operator.
The h,. update remains the same,

h, = argmin |R — w,h" ||* = —— max(R'w,, 0)
h>0 rWr
except that if||z,.||1 > 1, we can (safetly) resét, = ﬁhr and satisfy the constraints. Because

h, is in a descent direction and the objective function is qagclrthis resetting does not increase
the objective value.

Note that enforcing sparsity iW also affects the sparsity H.

Some preliminary exploration of sparsity in the context o€dment clustering appears in[11].

3.2 Measuring Effect of Sparse Coding

We are interested in understanding whether sparsity leabistter topic models while significantly
reducing storage requirements. One way to measure quélityapic model is the reconstruction
error on a held out test set,

‘1'7{/,1121}) HXtest - VVH”2

This may be viewed as antrinsic measure that can be computed by running round$vobp-
timization keepingH fixed. It is important to note however that evaluation of topiodels is an
area of ongoing research. A recent paper [3] proposed mettwomhcorporate human judgement
in evaluating topic models which may be considereasinsic evaluation measures. The same
paper notes that intrinsic measures often do not correlieextrinsic evaluation. Another method
for extrinsic evaluation is to measure clustering qual¥][or evaluate classifiers using topic-based
data representatioris [2] on labeled datasets where eaameéat has been manually associated with
a category (the assumption is that labeled categoriesspmnel to topics).

4 Temporal Causal Modeling for Characterizing Influence

The objective of this part of the project would be to underdthow microbloggers influence each
other. As an example of the mechanics of spread of influeatasiconsider the following sequence
of events. A consumer is looking to buy a laptop. She initi@&eb search for the laptop model and
browses several discussion and blog sites where that madddden reviewed. The reviews bring to
her attention that among other nice features, the laptaptals excellent speaker quality. Next she
buys the laptop and in a few days herself blogs about it. Astyiaonditional on being made aware
of speaker quality in the reviews she had read, she is maglylik herself comment on that aspect
without necessarily attempting to find those sites againdieoto link to them in her blog. In other
words, the actual post content is the only trace that thei@piwas implicitly absorbed. Moreover,
the temporal order of events in this interaction is indieabf thedirection of causal influence

It is possible to formulate these intuitions rigorouslyenrhs of the notion oGranger Causality8].
Introduced by the Nobel prize winning economist, Clive @Gam this notion has proven useful as
an operational notion of causality in time series analyHiss based on the intuition that a cause
should necessarily precede its effect, and in particulartifne series variabl& causally affects



anotherY’, then the past values &f should be helpful in predicting the future valuesiafbeyond
what can be predicted based on the past valuésabne.

In our context, this may be phrased in the following terms:

Granger Causality: A collection of bloggers is said to influence Blogderif their collective past
content (blog posts) is predictive of the future contentlofjBer B;, more so than the past content
of BloggerB; alone.

Let B; ... Bg denote a community aff bloggers. To develop the above intuition further, we need
to represent “content” and define “predictive”. With eacbhdger, we associatsontent variables
which consist of frequencies of words relevant to a topiosstime. Specifically, given a dictionary
of K words and the time-stamp of each blog post, we retmih’j, the frequency of théth word

for blogger B; at timet[. Then, thecontentof blogger B; at timet can be represented & =
[wil’t? e ,w,f(*t]. The input to our model is a collection of multiple time seriene for each blogger
B;: {B!}L,, whereT is the timespan of our analysis. The output of our model isusaagraph
that encodes causal relationships between bloggers. Shistorially shown below.
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The causal graph is constructed by processing each bloggeby one. At steg, we consider
blogger B; and pose the problem of predicting her content variablesre#, B!, in terms of the
past content of the population, over a time window which isaeameter of our model. This is
a multivariate regression witk’-dimensional response vectB@- in terms of groups of variables

(B By ... {BL !} asillustrated in Figurgl1.

In this part of the project, we will experiment with a new aiigiom (a multivariate version of Group
Orthogonal Matching Pursuit with a novel application to &@unodeling) that selects certain vari-
able groups (bloggers) as relevant in the regression, baséldeir ability to explain the response
vector, namely the future content of bloggey. The selected groups then identify the causal links
incident onB; in the causal graph. Moreover, regression coefficients oh edge can be used to
identify the most influential and the most influenced words.

Once the causal graph is constructed, one can define a fafmitflwence measures on it that we
call GrangerRank The outdegrees of nodes in the causal graph, or the PageRarekxamples of
influence measures.

More technical details are available in the report [15].

4.1 Measuring Value of Causal Graphs

One can derive other measures of influence in twitter. Fomgka, the number of followers is
a natural measure. A proxy for a “ground truth” measure olugrice of a microblogger is the
probability of getting virally distributed (i.e., retwest) in the near future. One way to benchmark
the value of causal graphs in capturing influence more atzlyrénan say the number of followers
that a twitter account has, is to see if the causal influenokimg is more predictive of future

4this can also be computed XU whereU;; = 1 if documenti has timestamp and0 otherwise



Figure 1: Finding edges in the causal graph incident on Blodg Shown is the response vector,
and variable groups for multivariate regression.
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retweeting. This can be done by measuring the rank comeldgtween future re-tweet frequency
and the ranking returned by the causal model (i.e., via egtekes or pagerank). Another natural
baseline to compare against the historical retweet ratt.its

5 Combining Models: Understanding Topical Influence

Each microblogger can be associated with multiple timeeseepresenting usage of topics instead
of words cross time. The final part of the project will attertgptombine the topic models with the
causal models to arrive at a robust topical notion of infleenc

6 Project Plan

Team A: Learning Topics with Sparse Low-rank Non-negative Mdrix Factorizations

1. Explore the effect of sparsity on the tradeoff betweergtnaity of topic models and scal-
ability obtained due to reduction in memory requirements.

2. Qualitatively explore the performance of sparse NMFdopodels on twitter datasets.

3. Compare competing topic modeling methodologies suchDas against sparse low-rank
non-negative factorizations as in [3].

4. Combine the topic model with causal models for influencekimg with Team B.

Team B: Inferring Key Influencers with Granger Causality
Implement GrangerRanks (Matlab)

Explore GrangerRanks on twitter datasets.

Benchmark them against measures like future retweet.rate
Build models at the level of topics working with Team A.

PR

Note: This plan gives a sketch of some of the technical ideas wendeeeisted in exploring. The
project will allow for significant flexibility in exploringelated technical directions based on evolv-
ing interests of team members and mentors.
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