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Abstract

Compressive spectral clustering combines the dis-
tance preserving measurements of compressed
sensing with the power of spectral clustering. Our
analysis provides rigorous bounds on how small
errors in the affinity matrix can affect the spectral
coordinates and clusterability. This work gener-
alizes the current perturbation results of two-class
spectral clustering to incorporate multiclass clus-
tering usingk eigenvectors.

One of the most common and powerful techniques
for extracting meaningful information from a data set
is spectral clustering. Spectral clustering uses local in-
formation to embed the data into a space which cap-
tures the global group structure. Standard learning tech-
niques require an appropriate transformation to higher
dimension where dimensionality reduction is done be-
fore clustering. Compressed sensing provides a math-
ematically rigorous way to obtain optimal dimension-
ality reduction for exact reconstruction. Hyperspectral
images and MRIs are examples of high dimensional sig-
nals where the true underlying data may only have a few
degrees of freedom or be sparse in some unknown ba-
sis. We show that the meaningful organization extracted
from spectral clustering is preserved under the perturba-
tion from making compressed sensing measurements.

Background
Traditional spectral clustering uses local Euclidean dis-
tances between data points to construct a graph with
edge weights,

W (xi, xj) = exp

(

−‖xi, xj‖2
2

2σ

)

,

that define the symmetric affinity matrix

A = D− 1

2 WD− 1

2 (1)
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whereD(xi, xi) =
∑

k W (xi, xk) is a diagonal matrix
of row sums ofW . The data can be bipartitioned by ap-
plying k-means to the coordinates of the second eigen-
vector of the affinity matrixA (Ng, Jordan, and Weiss
2001). Multiclass clustering is achieved by repeatedly
bipartitioning using the second eigenvector or by apply-
ing k-means to the topk eigenvectors ofA (Jianbo, Yu,
and Shi 2003).

Compressed sensing is used for exact recovery of
sparse signals using fewer measurements than the am-
bient dimension. Compressed sensing provides a bound
on the error derived from making these few measure-
ments of a signal. Our goal is to take advantage of
these compressed sensing techniques to perform spec-
tral clustering using much fewer measurements than
the ambient dimension (Donoho 2006; Candès and Tao
2005).

Earlier perturbation results have shown that spec-
tral clustering using the second eigenvector is robust
to small perturbation of the data (Huang et al. 2008).
These results are based on the following perturbation
theorem.

Theorem 1 Given a perturbation ofA Ã = A + E, let
λi and vi be theith eigenvalue and eigenvector ofA

andṽi be theith eigenvalue of̃A respectively, then

‖ṽ2 − v2‖ ≤ 1

λ2 − λ3

‖E‖ + O
(

‖E‖2
)

. (2)

This applies provided the gap between the second and
third eigenvalue is not close to zero which is not the
case of data sets with more than two underlying clus-
ters. The number of eigenvalues close to one is equal
to the number of separate clusters. Our analysis gen-
eralizes the results of spectral clustering on perturbed
data to incorporate multi-class clustering using the top
k eigenvectors.

Compressive Spectral Clustering
Assume that there is an underlyingr-sparse represen-
tation yi of the dataxi, whereyi = Bxi is a known



or unknown unitary transformation ofxi. Let Φ be a
randomK × N matrix, with GaussianN (0, 1) entries.
Define the local distancẽd(xi, xj) = ‖Φxi − Φxj‖2

usingm compressed sensing measurements. Construct
a graph with edge weights,

W̃ (xi, xj) = exp

(

−‖Φxi − Φxj‖2
2

2σ

)

.

Define the symmetric matrix

Ã = D̃− 1

2 W̃ D̃− 1

2 (3)

whereD̃i,i =
∑

k W̃ (xi, xk). Use the firstk eigenvec-
tors of Ã as ak low-dimensional representation of the
data and coordinates for clustering and classification.

The perturbation of the local distances calculated in
the compressed domain,̃d(xi, xj), can be made arbi-
trarily close to the true local distanced(xi, xj) by tak-
ing enough measurements. This is guaranteed by the re-
stricted isometry property of compressed sensing. This
small error can cause large error between the true and
perturbed eigenvectors,‖vi−ṽi‖. With some conditions
on the separation of eigenvalues, we show that spec-
tral coordinates of firstk eigenvectors of̃A from taking
compressed sensing measurements, can be made arbi-
trarily close to the traditional spectral coordinate when
using the full ambient dimension. Thus the meaningful
organization extracted from spectral clustering is pre-
served under the perturbation from making compressed
sensing measurements.

Theorem 2 Let A be the adjacency matrix from stan-
dard spectral clustering defined in(1). If Ã is the
adjacency matrix formed by taking compressed sens-
ing measurements defined in(3), where W̃i,j =

e−
‖Φxi−Φxj‖2

2

2σ , thexis arer-sparse andΦ satisfies the
RIP with

δ =
ǫ

4 maxi,j

{

‖xi−xj‖2

2

2σ

} .

Then for0 < ǫ < 1,

|Ãi,j − Ai,j | ≤ ǫ.

We show that the firstk eigenvectors of̃A provide the
same low dimensional embedding as thek eigenvectors
of traditional spectral clustering.

Let
V = [v1 v2 . . . vk] ,

wherevl is the column eigenvector corresponding to the
lth largest eigenvalue ofA and similarly define

Ṽ = [ṽ1 ṽ2 . . . ṽk] ,

for first k column eigenvector of̃A. Each data point can
be clustered by applying k-means to the rows ofV or
Ṽ .

Theorem 3 Let A and Ã be the affinity matrices
from standard spectral clustering and from compressive
spectral clustering as defined above. If there is aα > 0
such thatλk − λk+1 ≥ α andλk ≥ α, then the canon-
ical angleΘ between the column space of the firstk

eigenvectors of̃A and the column space of the firstk
eigenvectors ofA will satisfy,

‖ sin Θ‖F ≤ Nǫ

α
.

This bounds the low dimensional embedding of project-
ing onto the firstk eigenvectors of̃A,

‖PVk
− PṼk

‖F =
√

2‖ sinΘ‖F ≤
√

2

α
‖A − Ã‖F .

Theorem 4 GivenV formed by the topk column eigen-
vectors ofA and Ṽ , the matrix formed by the topk
eigenvectors of̃A. If Q is the orthogonal matrix that
minimizes‖Ṽ − V Q‖F defined above then

‖Ṽ − V Q‖2 ≤ (1 +
√

2)
N

α
ǫ.

ThusṼ can be made arbitrarily close to a rotation ofV .

Corollary 5 If v(i) is the ith row of V formed by the
top k eigenvectors ofA and ṽ(i) is the ith row of Ṽ

formed by the topk eigenvectors of̃A. Then

‖ṽ(i) − v(i)Q‖2 ≤ (1 +
√

2)
N

α
ǫ

whereQ is the orthogonal matrix that minimizes‖Ṽ −
V Q‖F .

The rows ofV and Ṽ provide interchangeable coor-
dinates for clustering and classification. Thus spectral
clustering is achievable in the compressed domain.
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